Journal of Mechanical Science and Technology

, Volume 31, Issue 9, pp 4405–4410 | Cite as

The weldability study of carbon nanotube based 2nd generation primer coated steel for automotive applications

  • Vijeesh Vijayan
  • Nazmul Huda
  • Siva Prasad Murugan
  • Chanyoung Jeong
  • Seung Man Noh
  • Namhyun Kang
  • Yeong-Do ParkEmail author


The selection and application of the type coating to steel sheets in automotive industries depend on factors like corrosion protection, manufacturing compatibility and cost. The ‘first generation’ type primer coating improved the corrosion protection of chromate free pretreatments, however it deteriorated the resistance spot weldability of the sheets. The development of 2nd generation primer coating with additives such as CNT showed dominance in corrosion protection properties along with zinc. The present paper investigates the resistance spot weldability of the CNT added primer coating. The weldability was evaluated by comparing the CNT added primer with 1st generation primer for nugget size and electrode life. At lower welding currents, the nugget size of the CNT added primer was significantly lower than the primer coated steels. The increase in the dynamic resistance of the CNT coated steel after nugget formation led to higher nugget sizes at higher currents. The decrease in aluminum and increment in the Fe concentration at the electrode surface during welding of CNT based primer coated steels would improve the electrode life.


Resistance spot welding Corrosion protection primers Duplex system Organic coating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Akafuah, S. Poozesh, A. Salaimeh, G. Patrick, K. Lawler and K. Saito, Evolution of the automotive body coating process—A review, Coatings, 6 (2) (2016) 24.CrossRefGoogle Scholar
  2. [2]
    Precoated steels for the automotive industry,, 30-May-2001, Available: [Accessed: 31-Jan-2017].Google Scholar
  3. [3]
    H. Karbasian and A. E. Tekkaya, A review on hot stamping, J. Mater. Process. Technol., 210 (15) (2010) 2103–2118.CrossRefGoogle Scholar
  4. [4]
    F. Borsetto, A. Ghiotti and S. Bruschi, Investigation of the high strength steel Al-Si coating during hot stamping operations, Key Eng. Mater., 410–411 (2009) 289–296.CrossRefGoogle Scholar
  5. [5]
    K. Mori and D. Ito, Prevention of oxidation in hot stamping of quenchable steel sheet by oxidation preventive oil, CIRP Ann.-Manuf. Technol., 58 (1) (2009) 267–270.CrossRefGoogle Scholar
  6. [6]
    L. Prendi, P. Henshaw and E. K. L. Tam, Automotive coatings with improved environmental performance, Int. J. Environ. Stud., 63 (4) (2006) 463–471.CrossRefGoogle Scholar
  7. [7]
    C. Y. Kang, S. M. Noh, J. H. Nam, J. Moon and H. J. Kim, Weldable pre-primed coating composition for automotive oem and coating method thereof, US20110311727 A1, 22-Dec-2011 (2011).Google Scholar
  8. [8]
    Stahl-Informations-Zentrum, Weldable corrosion-protection primer - thin film-coated steel sheets for the automotive industry, Publication 122 - E, STAHL, ISSN 0175-2006-2010.Google Scholar
  9. [9]
    D. Santos, H. Raminhos, M. R. Costa, T. Diamantino and F. Goodwin, Performance of finish coated galvanized steel sheets for automotive bodies, Prog. Org. Coat., 62 (3) (2008) 265–273.CrossRefGoogle Scholar
  10. [10]
    S. Kowieski, Z. Mikno and A. Pietras, Welding of advanced high-strength steels, Biul. Inst. Spaw. Gliwicach (2012).Google Scholar
  11. [11]
    Wiley, Automotive Paints and Coatings, 2nd Edition, Hans-Joachim Streitberger, Karl-Friedrich Dossel, Available: [Accessed: 04-Feb-2017].Google Scholar
  12. [12]
    D. Santos, H. Raminhos, M. Costa, T. Diamantino and F. Goodwin, Performance of conductive pre-primers applied on galvanized steel sheets for automotive bodies, SAE Technical paper, 2007-01-1750 (2007) doi:10.4271/2007-01-1750.CrossRefGoogle Scholar
  13. [13]
    Chromate Primer Alternative Uses Carbon Nano-tubes Modified with Corrosion Inhibitors, Available: chromate-primer-alternative-uses-carbon-nanotubes-modifiedwith-corrosion-inhibitors [Accessed: 31-Jan-2017].Google Scholar
  14. [14]
    Y. Cubides and H. Castaneda, Corrosion protection mechanisms of carbon nanotube and zinc-rich epoxy primers on carbon steel in simulated concrete pore solutions in the presence of chloride ions, Corros. Sci., 109 (2016) 145–161.CrossRefGoogle Scholar
  15. [15]
    J. Kaiser, G. Dunn and T. Eagar, The effect of electrical resistance on nugget formation during spot welding, Welding Research Supplement (1982) 167–174.Google Scholar
  16. [16]
    Z. Han, J. Orozco, J. E. Indacochea and C. H. Chen, Resistance spot welding: A heat transfer study, Weld. J., 68 (9) (1989) 363–371.Google Scholar
  17. [17]
    P. S. Wei and T. H. Wu, Electrical contact resistance effect on resistance spot welding, Int. J. Heat Mass Transf., 55 (11–12) (2012) 3316–3324.CrossRefGoogle Scholar
  18. [18]
    C. W. Ji, I. Jo, H. Lee, I. D. Choi, Y. D. Kim and Y. D. Park, Effects of surface coating on weld growth of resistance spot-welded hot-stamped boron steels, J. Mech. Sci. Technol., 28 (11) (2014) 4761–4769.CrossRefGoogle Scholar
  19. [19]
    D. C. Saha, C. W. Ji and Y. D. Park, Coating behavior and nugget formation during resistance welding of hot forming steels, Sci. Technol. Weld. Join., 20 (8) (2015) 708–720.CrossRefGoogle Scholar
  20. [20]
    D. W. Dickinson, J. E. Franklin and A. Stanya, Characterization of spot welding behavior by dynamic electrical parameter monitoring, Weld. J., 59 (6) (1980) 170–176.Google Scholar
  21. [21]
    S. S. Babu, M. L. Santella, Z. Feng, B. W. Riemer and J. W. Cohron, Empirical model of effects of pressure and temperature on electrical contact resistance of metals, Sci. Technol. Weld. Join., 6 (3) (2001) 126–132.CrossRefGoogle Scholar
  22. [22]
    R. Endo, R. Ikuta and M. Susa, Electrical-resistivity measurements of liquid Fe-C alloys using the four-terminal method, ISIJ Int., 56 (11) (2016) 2107–2109.CrossRefGoogle Scholar
  23. [23]
    E. T. Thostenson, C. Li and T. Chou, Nanocomposites in context, Composites Science and Technology, 65 (2005) 491–516.CrossRefGoogle Scholar
  24. [24]
    A. De, L. Dorn and O. P. Gupta, Analysis and optimization of electrode life for conventional and compound tip electrodes during resistance spot welding of electrogalvanized steels, Sci. Technol. Weld. Join., 5 (1) (2000) 49–57.CrossRefGoogle Scholar
  25. [25]
    N. T. Williams and J. D. Parker, Review of resistance spot welding of steel sheets: Part 2 Factors influencing electrode life, Int. Mater. Rev., 9 (2) (2004) 77–108.CrossRefGoogle Scholar
  26. [26]
    Z. Wan, H.-P. Wang, M. Wang, B. E. Carlson and D. R. Sigler, Numerical simulation of resistance spot welding of Al to zinc-coated steel with improved representation of contact interactions, Int. J. Heat Mass Transf., 101 (2016) 749–763.CrossRefGoogle Scholar
  27. [27]
    X. Hu, G. Zou, S. J. Dong, M. Y. Lee, J. P. Jung and Y. Zhou, Effects of steel coatings on electrode life in resistance spot welding of galvannealed steel sheets, Mater. Trans., 51 (12) (2010) 2236–2242.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Vijeesh Vijayan
    • 1
  • Nazmul Huda
    • 1
  • Siva Prasad Murugan
    • 1
  • Chanyoung Jeong
    • 1
  • Seung Man Noh
    • 2
  • Namhyun Kang
    • 3
  • Yeong-Do Park
    • 1
    Email author
  1. 1.Department of Advanced Materials EngineeringDong-Eui UniversityBusanKorea
  2. 2.Research Center for Green Fine ChemicalsKorea Research Institute of Chemical Technology (KRICT)UlsanKorea
  3. 3.Department of Materials Science and EngineeringPusan National UniversityGeumjeong-gu, BusanKorea

Personalised recommendations