Skip to main content
Log in

Experimental evaluation on oxidation stability of biodiesel/diesel blends with alcohol addition by rancimat instrument and FTIR spectroscopy

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Use of alcohols blended with biodiesel as alternative fuel in diesel engine is an attractive solution for depletion and demand of fossil fuels in transportation and industrial applications. Calophyllum Inophyllum is a higher oil yielding species with high heating value and notably non-edible oil. One of the most important criteria used for assessing the quality of biodiesel blended fuel is ‘storage oxidation stability’. Deprived oxidation stability is the important technical obstacle associated with the biodiesel commercialization. This study investigated the oxidation stability of biodiesel blends at 100 % (B100) and 20 % (B20) volume concentrations with diesel through induction time determined by Rancimat instrument. Effects of pentanol addition with B20 biodiesel at 10 % (P10) and 15 % (P15) volume concentrations are also analyzed. FTIR spectroscopy characterizes the oxidation variability of all test fuels. It can be concluded that the biodiesel (B100) shows good oxidation stability (I.P = 8.47 h). Addition of pentanol (10 %) enhances the storage ability by 44.57 % than B20, whereas further addition of pentanol (15 %) declines by 19.48 % when compared to P10. More concentration of pentanol weakens the hydrophilic and hydrophobic clusters formed between pentanol/diesel/biodiesel compounds which have been characterized using infra red spectroscopic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shameer P. M. and Ramesh K., Experimental evaluation on performance, combustion behavior and influence of incylinder temperature on NOx emission in a D.I diesel engine using thermal imager for various alternate fuel blends, Energy (2016) http://dx.doi.org/10.1016/j.energy.2016.11.017.

    Google Scholar 

  2. Mohamed Shameer P., Ramesh K., Sakthivel R. and Purnachandran R., Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review, Renewable and Sustainable Energy Reviews, 67 (2017) 1267–1281 ISSN: 1364-0321. DOI: http://dx.doi.org/10.1016/j.rser.2016.09.117.

    Article  Google Scholar 

  3. H. C. Ong, H. H. Masjuki, T. M. I. Mahlia, A. S. Silitonga, W. T. Chong and K. Y. Leong, Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine, Energ Convers Manage, 81 (2014) 30–40, http://dx.doi.org/10.1016/ j.enconman.2014.01.065.

    Article  Google Scholar 

  4. H. C. Ong, H. H. Masjuki, T. M. I. Mahlia, A. S. Silitonga, W. T. Chong and T. Yusaf, Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine, Energy, 69 (2014) 427–445, http://dx.doi.org/10.1016/j.energy.2014.03.035.

    Google Scholar 

  5. I. M. Monirul, H. H. Masjuki, M. A. Kalam, M. H. Mosarof, N. W. M. Zulkifli, Y. H. Teoh and H. G. How, Assessment of performance, emission and combustion characteristics of palm, jatropha and Calophyllum inophyllum biodiesel blends, Fuel, 181 (2016) 985–995, http://dx.doi.org/10.1016/ j.fuel.2016.05.010.

    Google Scholar 

  6. A. E. Atabani and A. da Silva Cesar, Calophyllum inophyllum L. -A prospective non-edible biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine performance, Renew Sust. Energ. Rev., 37 (2014) 644–655, http://dx.doi.org/10.1016/j.rser.2014.05.037.

    Article  Google Scholar 

  7. A. K. Agarwal, Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines, Energy Combustion, 33 (2007) 233–271, DOI: 10.1016/j.pecs.2006.08.003.

    Article  Google Scholar 

  8. K. A. Heufer, J. Bugler and H. J. Curran, A comparison of longer alkane and alcohol ignition including new experimental results for n-pentanol and n-hexanol, Proceedings of the Combustion Institute, 34 (2013) 511–518, http://dx.doi.org/ 10.1016/j.proci.2012.05.103.

    Article  Google Scholar 

  9. C.-F. Javier, J. M. Arnal, J. Gomez and M. P. Dorado, A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine, Appl. Energ., 95 (2012) 267–275, DOI:10.1016/j.apenergy.2012.02.051.

    Article  Google Scholar 

  10. L. Li, W. Jianxin, W. Zhi and X. Jianhua, Combustion and emission characteristics of diesel engine fueled with diesel/biodiesel/pentanol fuel blends, Fuel, 156 (2015) 211–218, http://dx.doi.org/10.1016/j.fuel.2015.04.048.

    Article  Google Scholar 

  11. E. Ileri, Experimental study of 2-ethylhexyl nitrate effects on engine performance and exhaust emissions of a diesel engine fueled with n-butanol or 1-pentanol diesel-sunflower oil blends, Energ. Convers Manage, 118 (2016) 320–330, http://dx.doi.org/10.1016/j.enconman.2016.04.015.

    Article  Google Scholar 

  12. L. Zhu, Y. Xiao, C. S. Cheung, C. Guan and Z. Huang, Combustion, gaseous and particulate emission of a diesel engine fueled with n-pentanol (C5 alcohol) blended with waste cooking oil biodiesel, Appl. Therm. Eng., 102 (2016) 73–79, http://dx.doi.org/10.1016/j.applthermaleng.2016.03.145.

    Article  Google Scholar 

  13. A. Atmanli, Comparative analyses of diesel-waste oil biodiesel and propanol, n-butanol or 1-pentanol blends in a diesel engine, Fuel, 176 (2016) 209–215, http://dx.doi.org/10.1016/j.fuel.2016.02.076.

    Google Scholar 

  14. H. K. Imdadul, H. H. Masjuki, M. A. Kalam, N. W. M. Zulkifli, A. Alabdulkarem, M. Kamruzzaman and M. M. Rashed, A comparative study of C4 and C5 alcohol treated diesel-biodiesel blends in terms of diesel engine performance and exhaust emission, Fuel, 179 (2016) 281–288, http://dx. doi.org/10.1016/j.fuel.2016.04.003.

    Article  Google Scholar 

  15. M. Mittelbach and S. Gangl, Long storage stability of biodiesel made from rapeseed and used frying oil, J. Am Oil Chem. Soc., 78 (2001) 573–577, DOI: 10.1007/s11746-001-0306-z.

    Article  Google Scholar 

  16. R. O. Dunn, Oxidative stability of soybean oil fatty acid methyl esters by oil stability index (OSI), J. Am Oil Chem. Soc., 82 (2005) 381–387, DOI: 10.1007/s11746-005-1081-6.

    Article  Google Scholar 

  17. S.-K. Loh, S.-M. Chew and Y.-M. Choo, Oxidative stability and storage behavior of fatty acid methyl esters derived from used palm oil, J. Am Oil Chem. Soc., 83 (2006) 947–952, DOI: 10.1007/s11746-006-5051-9.

    Article  Google Scholar 

  18. M. B. Dantas, A. R. Albuquerque, L. E. B. Soledade, N. Queiroz, A. S. Maia, M. G. Santos, A. L. Souza, E. H. S. Cavalcanti, A. K. D. Barro and A. G. Souza, Biodiesel from soybean oil, castor oil and their blends, Oxidative stability by PDSC and rancimat, J. Therm Anal Calorim, 106 (2011) 607–611, DOI: 10.1007/s10973-011-1410-3.

    Article  Google Scholar 

  19. M. L. A. Tavares, N. Queiroz, I. M. G. Santos, A. L. Souza, E. H. S. Cavalcanti, A. K. D. Barro, R. Rosenhaim, L. E. B. Soledade and A. G. Souza, Sunflower biodiesel, Use of PDSC in the evaluation of antioxidant efficiency, J. Therm Anal. Calorim., 106 (2011) 575–579, DOI: 10.1007/s10973-011-1357-4.

    Google Scholar 

  20. E. F. S. M. Ramalho, A. R. Albuquerque, A. L. Souza, A. K. Barro, A. S. Maia, I. M. G. Santos and A. G. Souza, Use of different techniques in the evaluation of the oxidative stability of poultry fat biodiesel, J. Therm. Anal. Calorim., 106 (2011) 787–791, DOI: 10.1007/s10973-011-1545-2.

    Article  Google Scholar 

  21. J. Dweck, R. S. Leonardo and M. L. M. Valle, Evaluating antioxidants efficiency during storage of ethylic and methylic biodiesel by low pressurized DSC and Rancimat methods, J. Therm. Anal. Calorim., 113 (2013) 1317–1325, DOI: 10.1007/s10973-013-3028-0.

    Article  Google Scholar 

  22. A. S. R. Maria, F. P. S. Francisco, J. N. M. Francisco and E. M. Selma, Evaluation of antioxidants on the thermooxidative stability of soybean biodiesel, J. Therm. Anal. Calorim., 112 (2013) 921–927, DOI 10.1007/s10973-012-2650-6.

    Article  Google Scholar 

  23. M. L. Murta Valle, R. S. Leonardo and J. Dweck, Comparative study of biodiesel oxidation stability using Rancimat, PetroOXY and low P-DSC, J. Therm. Anal. Calorim., 116 (2014) 113–118, DOI: 10.1007/s10973-014-3706-6.

    Article  Google Scholar 

  24. M. A. M. F. Melo, M. A. R. Melo, A. S. G. C. Pontes, A. F. F. Farias, M. B. Dantas, C. D. Calixto, A. G. Souza and J. R. C. Filho, Non-conventional oils for biodiesel production: a study of thermal and oxidative stability, J. Therm. Anal. Calorim., 117 (2014) 845–849, DOI: 10.1007/s10973-014-3825-0.

    Article  Google Scholar 

  25. L. M. Pinto, A. L. de Souza, A. G. Souza, I. M. G. Santos and N. Queiroz, Comparative evaluation of the effect of antioxidants added into peanut (arachis hypogae l.) oil biodiesel by P-DSC and rancimat, J. Therm. Anal. Calorim., 120 (2015) 277–282, DOI 10.1007/s10973-014-4181-9.

    Article  Google Scholar 

  26. A. T.-R. Daniela, C. R.-I. Issis, I. A. Ibarra and H. Pfeiffer, Biodiesel production from soybean and Jatropha oils using cesium impregnated sodium zirconate as a heterogeneous base catalyst, Renew Energ., 93 (2016) 323–331, http://dx.doi.org/10.1016/j.renene.2016.02.061.

    Article  Google Scholar 

  27. D. Reyman, A. S. Bermejo, I. R. Uceda and M. R. Gamero, A new FTIR method to monitor transesterification in biodiesel production by ultrasonication, Environ. Chem. Lett., 12 (2014) 235–240, DOI 10.1007/s10311-013-0440-4.

    Article  Google Scholar 

  28. C. G. Mothe, B. C. S. de Castro and M. G. Mothe, Characterization by TG/DTG/DSC and FTIR of frying and fish oil residues to obtain biodiesel, J. Therm. Anal. Calorim., 106 (2011) 811–817, DOI 10.1007/s10973-011-1795-z.

    Article  Google Scholar 

  29. M. E. S. Mirghani, N. A. Kabbashi, Md. Z. Alam, I. Y. Qudsieh and M. F. R. Alkatib, Rapid method for the determination of moisture content in biodiesel using FTIR spectroscopy, J. Am. Oil Chem. Soc., 88 (2011) 1897–1904, DOI: 10.1007/s11746-011-1866-0.

    Article  Google Scholar 

  30. P. Y. Furlan, P. Wetzel, S. Johnson, J. Wedin and A. Och, Investigating the oxidation of biodiesel from used vegetable oil by FTIR spectroscopy: Used vegetable oil biodiesel oxidation study by FTIR, Spectros Lett., 43 (2010) 580–585, http://dx.doi.org/10.1080/00387010.2010.510708.

    Article  Google Scholar 

  31. S. S. Damasceno, N. A. Santos, I. M. G. Santos, A. L. Souza, A. G. Souza and N. Queiroz, Caffeic and ferulic acids: An investigation of the effect of antioxidants on the stability of soybean biodiesel during storage, Fuel, 107 (2013) 641–646, http://dx.doi.org/10.1016/j.fuel.2012.11.045.

    Article  Google Scholar 

  32. D. M. Fernandes et al., Storage stability and corrosive character of stabilised biodiesel exposed to carbon and galvanised steels, Fuel, 107 (2013) 609–614, http://dx.doi.org/10.1016/j.fuel.2012.11.010.

    Article  Google Scholar 

  33. M. Lapuerta, J. Rodríguez-Fernández, Á. Ramos and B. Álvarez, Effect of the test temperature and anti-oxidant addition on the oxidation stability of commercial biodiesel fuels, Fuel, 93 (2012) 391–396, http://dx.doi.org/10.1016/j.fuel. 2011.09.011.

    Article  Google Scholar 

  34. M. Serrano, A. Bouaid, M. Martínez and J. Aracil, Oxidation stability of biodiesel from different feedstocks: Influence of commercial additives and purification step, Fuel, 113 (2013) 50–58, http://dx.doi.org/10.1016/j.fuel.2013.05.078.

    Article  Google Scholar 

  35. R. Sarin, M. Sharma, S. Sinharay and R. K. Malhotra, Jatropha-Palm biodiesel blends: An optimum mix for Asia, Fuel, 86 (2007) 1365–1371, http://dx.doi.org/10.1016/j.fuel.2006.11.040.

    Article  Google Scholar 

  36. D. M. Fernandes, D. S. Serqueira, F. M. Portela, R. M. N. Assunção, R. A. A. Munoz and M. G. H. Terrones, Preparation and characterization of methylic and ethylic biodiesel from cottonseed oil and effect of tert-butylhydroquinone on its oxidative stability, Fuel, 97 (2012) 658–661, http://dx.doi.org/10.1016/j.fuel.2012.01.067.

    Article  Google Scholar 

  37. H. Tang, A. Wang, S. Salley and K. Y. S. Ng, The effect of natural and synthetic antioxidants on the oxidative stability of biodiesel, Journal of American Oil Chemist’s Society, 85 (2008) 373–382, doi:10.1007/s11746-008-1208-z.

    Article  Google Scholar 

  38. A. Obadiah, R. Kannan, A. Ramasubbu and S. V. Kumar, Studies on the effect of antioxidants on the long-term storage and oxidation stability of Pongamia pinnata (L.) Pierre biodiesel, Fuel Processing Technology, 99 (2012) 56–63, http://dx.doi.org/10.1016/j.fuproc.2012.01.032.

    Article  Google Scholar 

  39. M. Chakraborty and D. C. Baruah, Investigation of oxidation stability of Terminalia belerica biodiesel and its blends with petrodiesel, Fuel Processing Technology, 98 (2012) 51–58, http://dx.doi.org/10.1016/j.fuproc.2012.01.029.

    Article  Google Scholar 

  40. S. S. Pantoja, L. R. V. da Conceição, C. E. F. da Costa, J. R. Zamian and F. G. N. da Rocha, Oxidative stability of biodiesels produced from vegetable oils having different degrees of unsaturation, Energy Conversion Management, 74 (2013) 293–298, DOI: 10.1016/j.enconman.2013.05.025.

  41. Z. Yang, B. P. Hollebone, Z. Wang, C. Yang and M. Landriault, Factors affecting oxidation stability of commercially available biodiesel products, Fuel Processing Technology, 106 (2013) 366–375, http://dx.doi.org/10.1016/j.fuproc.2012. 09.001.

    Article  Google Scholar 

  42. M. Lapuerta, R. Garcia-Contreras, J. Campos-Fernandez and M. P. Dorado, Stability,lubricity,viscosity,and coldflow properties of alcohol-diesel blends, Energy Fuels, 24 (2010) 4497–4502, DOI: 10.1021/ef100498u.

    Article  Google Scholar 

  43. H. Abou-Rachid, K. E. Marrouni and S. Kaliaguine, DFT studies of the hydrogen abstraction from primary alcohols by O2 in relation with cetane number data, Journal of Molecular Structure: THEOCHEM., 631 (2003) 241–250, http://dx.doi. org/10.1016/S0166-1280(03)00257-4.

  44. M. Gautam and D. W. Martin, Combustion characteristics of higher-alcohol /gasoline blends, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 214 (2000) 5497–5511, doi: 10.1243/ 0957650001538047.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Shameer Peer.

Additional information

Recommended by Associate Editor Jeong Park

Mohamed Shameer P. received his Post Graduate degree in Thermal Engineering from Anna University Chennai, Tamil Nadu, India in 2015. In 2009, he joined Mechanical Engineering and graduated as University Rank Holder in Anna University Chennai, Tamil Nadu, India. He is currently working as a Teaching Research Associate and doing his research (Ph.D. degree) in energy, oxidation stability and combustion at Government College of Technology, Coimbatore, Tamil Nadu, India.

Ramesh K. received his Ph.D. degree in Mechanical Engineering from Anna University Chennai, Tamil Nadu, India in 2013. He is currently working as Assistant Professor (Senior Grade) of Mechanical Engineering at Government College of Technology, Coimbatore, Tamil Nadu, India for a period of 11 years (2005-2016). He has 17 years of teaching experience. His research interests include energy, combustion, environmental pollution, vibration analysis and manufacturing processes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peer, M.S., Kasimani, R., Rajamohan, S. et al. Experimental evaluation on oxidation stability of biodiesel/diesel blends with alcohol addition by rancimat instrument and FTIR spectroscopy. J Mech Sci Technol 31, 455–463 (2017). https://doi.org/10.1007/s12206-016-1248-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-016-1248-5

Keywords

Navigation