Journal of Mechanical Science and Technology

, Volume 30, Issue 9, pp 3945–3952

High frequency travelling surface acoustic waves for microparticle separation

Article

Abstract

In this study, we have demonstrated a particle separation device taking advantage of the high frequency sound waves. The sound waves, in the form of surface acoustic waves, are produced by an acoustofluidic platform built on top of a piezoelectric substrate bonded to a microfluidic channel. The particles’ mixture, pumped through the microchannel, is focused using a sheath fluid. A Travelling surface acoustic wave (TSAW), propagating normal to the flow, interacts with the particles and deflects them from their original path to induce size-based separation in a continuous flow. We initially started the experiment with 40 MHz TSAWs for deflecting 10 µm diameter polystyrene particles but failed. However, larger diameter particles (~ 30 µm) were successfully deflected from their streamlines and separated from the smaller particles (~ 10 µm) using TSAWs with 40 MHz frequency. The separation of smaller diameter particles (3, 5 and 7 µm) was also achieved using an order of magnitude higher-frequency (~ 133 MHz) TSAWs.

Keywords

Acoustofluidics Microfluidics Particle separation Surface acoustic waves Travelling surface acoustic waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Pamme, Continuous flow separations in microfluidic devices, Lab Chip, 7 (12) (2007) 1644–1659.CrossRefGoogle Scholar
  2. [2]
    A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han and C. T. Lim, Microfluidics for cell separation, Med. Biol. Eng. Comput., 48 (10) (2010) 999–1014.CrossRefGoogle Scholar
  3. [3]
    J. Kim and C.-N. Kim, Evaluation of optimization algorithms for the design of a magnetic cell separator for malaria-infected blood, J. Mech. Sci. Technol., 29 (11) (2015) 4833–4839.CrossRefGoogle Scholar
  4. [4]
    G. Destgeer, H. Cho, B. H. Ha, J. H. Jung, J. Park and H. J. Sung, Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration, Lab Chip (2015) (DOI: 10.1039/C5LC01104C).Google Scholar
  5. [5]
    G. Destgeer and H. J. Sung, Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves, Lab Chip, 15 (13) (2015) 2722–2738.CrossRefGoogle Scholar
  6. [6]
    L. Y. Yeo and J. R. Friend, Surface acoustic wave microfluidics, Annu. Rev. Fluid Mech., 46 (1) (2014) 379–406.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    J. Shi, H. Huang, Z. Stratton, Y. Huang and T. J. Huang, Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW), Lab Chip, 9 (2009) 3354–3359.CrossRefGoogle Scholar
  8. [8]
    G. Destgeer, K. H. Lee, J. H. Jung, A. Alazzam and H. J. Sung, Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW), Lab Chip, 13 (21) (2013) 4210–4216.CrossRefGoogle Scholar
  9. [9]
    G. Destgeer, B. H. Ha, J. H. Jung and H. J. Sung, Submicron separation of microspheres via travelling surface acoustic waves, Lab Chip, 14 (24) (2014) 4665–4672.CrossRefGoogle Scholar
  10. [10]
    G. Destgeer, B. H. Ha, J. Park, J. H. Jung, A. Alazzam and H. J. Sung, Microchannel anechoic corner for sizeselective separation and medium exchange via traveling surface acoustic waves, Anal. Chem., 87 (9) (2015) 4627–4632.CrossRefGoogle Scholar
  11. [11]
    G. Destgeer, S. Im, B. H. Ha, J. Ho Jung, M. Ahmad Ansari and H. J. Sung, Adjustable, rapidly switching microfluidic gradient generation using focused travelling surface acoustic waves, Appl. Phys. Lett., 104 (2) (2014) 023506.CrossRefGoogle Scholar
  12. [12]
    T. Hasegawa and K. Yosioka, Acoustic-radiation force on a solid elastic sphere, J. Acoust. Soc., 46 (5B) (1969) 1139.CrossRefMATHGoogle Scholar
  13. [13]
    J. Friend and L. Yeo, Fabrication of microfluidic devices using polydimethylsiloxane, Biomicrofluidics, 4 (2) (2010) 026502.CrossRefGoogle Scholar
  14. [14]
    X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, F. Costanzo and T. J. Huang, Surface acoustic wave microfluidics, Lab Chip, 13 (18) (2013) 3626–3649.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ghulam Destgeer
    • 1
  • Anas Alazzam
    • 2
  • Hyung Jin Sung
    • 1
  1. 1.Department of Mechanical EngineeringKAISTDaejeonKorea
  2. 2.Department of Mechanical EngineeringKhalifa UniversityAbu DhabiUAE

Personalised recommendations