Journal of Mechanical Science and Technology

, Volume 30, Issue 9, pp 3907–3915 | Cite as

Effect of surface conditions on blast wave propagation

  • Seungho Song
  • Yibao Li
  • Changhoon Lee
  • Jung-Il Choi


We performed numerical simulations of blast wave propagations on surfaces by solving axisymmetric two-dimensional Euler equations. Assuming the initial stage of fireball at the breakaway point after an explosion, we investigated the effect of surface conditions considering surface convex or concave elements and thermal conditions on blast wave propagations near the ground surface. Parametric studies were performed by varying the geometrical factors of the surface element as well as thermal layer characteristics. We found that the peak overpressure near the ground zero was increased due to the surface elements, while modulations of the blast wave propagations were limited within a region for the surface elements. Because of the thermal layer, the precursor was formed in the propagations, which led to the attenuation of the peak overpressure on the ground surface.


Blast wave propagation Explosion Peak overpressure Obstacles Thermal layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Glasstone and P. J. Dolan, The effects of nuclear weapons, US DoD (1977).Google Scholar
  2. [2]
    C. E. Needham, Blast waves, Springer-Verlarg (2010).CrossRefGoogle Scholar
  3. [3]
    H. L. Brode, Numerical solution of spherical blast waves, J. Appl. Phys., 26 (1955) 766–775.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    G. Ben-Dor, Shock wave reflection phenomena, Springer-Verlag, New York (1992).CrossRefMATHGoogle Scholar
  5. [5]
    S.-M. Liang, J.-L. Hsu and J.-S. Wang, Numerical study of cylindrical blast-wave propagation and reflection, AIAA J., 39 (2001) 1152–1158.CrossRefGoogle Scholar
  6. [6]
    S.-M. Liang, J.-S. Wang and H. Chen, Numerical study of spherical blast-wave propagation and reflection, Shock Waves, 12 (2002) 59–68.CrossRefMATHGoogle Scholar
  7. [7]
    P. Colella, R. E. Ferguson, H. M. Glaz and A. L. Kuhl, Mach reflection from an HE-driven blast wave, Dynamics of Explosions: Progress in Astronautics and Aeronautics 106 (ed. J.R. Bowen, J.-C. Leyer, R.I. Soloukhin), AIAA (1986) 388–421.Google Scholar
  8. [8]
    D. K. Ofengeim and D. Drikakis, Simulation of blast wave propagation over a cylinder, Shock Waves, 7 (1997) 305–317.CrossRefMATHGoogle Scholar
  9. [9]
    K. Kato, T. Aoki, S. Kubota and M. Yoshida, A numerical scheme for strong blast wave driven by explosion, Int. J. Num. Mech. Fluids, 51 (2006) 1335–1353.CrossRefMATHGoogle Scholar
  10. [10]
    W. Peng, Z. Zhang, G. Gogos and G. Gzonas, Fluid structure interactions for blast wave mitigation, J. Appl. Mech., 78 (2011) 031016, 1-8.CrossRefGoogle Scholar
  11. [11]
    O. Igra, G. Hu, J. Falcobitz and W. Heilig, Blast wave reflection from wedges, J. of Fluid Engineering, 125 (2003) 510–519.CrossRefGoogle Scholar
  12. [12]
    J. M. Dewey, D. J. McMillin, D. J. and D. F. Classen, Photogrammetry of spherical shocks reflected from real and ideal surfaces, J. of Fluid Mechanics, 81 (1977) 701–717.CrossRefGoogle Scholar
  13. [13]
    Z. Jiang, K. Takayama, K. P. B. Moosad, O. Onodera and M. Sun, Numerical and experimental study of a micro-blast wave generated by pulsed-laser beam focusing, Shock Waves, 8 (1998) 337–349.CrossRefGoogle Scholar
  14. [14]
    T. C. J. Hu and I. I. Glass, Blast wave reflection trajectories from a height of burst, AIAA J., 24 (1986) 607–610.CrossRefGoogle Scholar
  15. [15]
    V. V. Shuvalov, Multi-dimensional hydrodynamic code SOVA for interfacial flows: Application to the thermal layer effect, Shock Waves, 9 (1999) 381–390.CrossRefMATHGoogle Scholar
  16. [16]
    J. Grun, R. Burris, G. Joyce, S. Slinker, J. Huba, K. Evans, C. K. Manka, J. R. Barthel and J. W. Wiehe, Small-scale laboratory measurement and simulation of a thermal precursor shock, J. Appl. Phys., 83 (1998) 2420–2427.CrossRefGoogle Scholar
  17. [17]
    V. A. Rybakov, I. V. Nemtchinov, V. V. Shuvalov, V. I. Artemiev and S. A. Medveduk, Mobilization of dust on the Mars surface by the impact of small cosmic bodies, J. Georphys. Res., 102 (1997) 9211–9220.CrossRefGoogle Scholar
  18. [18]
    V. A. Andrushchenko, M. V. Meshcheryakov and L. A. Ghudov, Spherical shock wave reflection from a surface with a heated gas layer, Fluid Dyn., 24 (1989) 607–613.CrossRefGoogle Scholar
  19. [19]
    P. L. Roe, Approximate Riemann solvers, parameter vector, and difference schemes, J. Comp. Phys., 43 (1981) 357–372.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    P. Colella and P. R. Woodward, The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comp. Phys., 54 (1984) 174–201.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    T. Ngo, P. Mendis, A. Gupta and J. Ramsay, Blast loading and blast effects on structures -An overview, EJSE Special Issue: Loading on Structures (2007) 78–91.Google Scholar
  22. [22]
    P. D. Smith and T. A. Rose, Blast wave propagation in city streets-an overview, Prog. Struct. Engng Mater., 8 (2006) 16–28.CrossRefGoogle Scholar
  23. [23]
    M. A. Asl and K. Kangarlou, Numerical simulation of barricades under blast wave propagation, J. Appl. Environ. Biol. Sci., 4 (6) (2014) 72–79.Google Scholar
  24. [24]
    H. Jung and W. Shim, Calculation of thermal fluence from extremely high-energy emission in air, IEEE Trans. Nucl. Sci., 62 (3) (2015) 1395–1398.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Seungho Song
    • 1
  • Yibao Li
    • 1
  • Changhoon Lee
    • 1
    • 2
  • Jung-Il Choi
    • 1
  1. 1.Department of Computational Science and EngineeringYonsei UniversitySeoulKorea
  2. 2.Department of Mechanical EngineeringYonsei UniversitySeoulKorea

Personalised recommendations