Journal of Mechanical Science and Technology

, Volume 30, Issue 1, pp 345–352 | Cite as

Predicting surface quality of γ-TiAl produced by additive manufacturing process using response surface method

  • Abdulrahman Al-Ahmari
  • Mohammad Ashfaq
  • Abdullah Alfaify
  • Basem Abdo
  • Abdulrahman Alomar
  • Abdelnaser Dawud
Article
  • 347 Downloads

Abstract

Electron beam melting (EBM) has been found to be a promising technology for producing complex shaped parts from gamma titanium aluminide alloys (γ-TiAl). The parts produced by this process are projected to have dimensions very close to the desired final shapes. However, the surface roughness of the parts produced by EBM is excessively rough. In many applications, it is necessary to improve the quality of manufactured parts using a convenient post process. This paper determines process parameters of end milling when it is used as a post process for the parts produced by EBM. Design of experiments has been used to study the effect of the selected input parameters of end milling (spindle speed, feed rate, depth of cut and coolant type) on the surface roughness of γ-TiAl parts. Response surface methodology is used to develop a predictive model for surface roughness. Effects of the selected milling process are investigated. This paper also optimizes the selected process parameters to minimize the value of the obtained surface roughness.

Keywords

EBM process End milling Response surface method Factorial design Surface quality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    www.wohlersassociates.com.Google Scholar
  2. [2]
    G. Sauthoff, Intermetallics, Weinheim; New York (1995).CrossRefGoogle Scholar
  3. [3]
    C. M. Austin, Current status of gamma Ti aluminides for aerospace applications, Current Opinion in Solid State and Materials Science, 4 (1999) 239–242.CrossRefGoogle Scholar
  4. [4]
    E. A. Loria, Gamma titanium aluminides as prospective structural materials, Intermetallics, 8 (2000) 133–1345.CrossRefGoogle Scholar
  5. [5]
    K. Kothari, R. Radhakrishnan, N. M. Wereley and T. S. Sudarshan, Microstructure and mechanical properties of consolidated gamma titanium aluminides, Powder Metallurgy, 50 (1) (2007) 21–7.CrossRefGoogle Scholar
  6. [6]
    D. Hu, X. Wu and M. H. Loretto, Advances in optimisation of mechanical properties in cast TiAl alloys, Intermetallics, 13 (91) (2005) 4–9.Google Scholar
  7. [7]
    D. K. Aspinwal, R. C. Dewes and A. L. Mantle, The machining of y-TiAl intermetallic alloys, CIRP Annals -Manufacturing Technology, 54 (1) (2005) 99–104.CrossRefGoogle Scholar
  8. [8]
    www.arcam.com.Google Scholar
  9. [9]
    K. Kothari, R. Radhakrishnan and N. M. Wereley, Advances in gamma titanium aluminides and their manufacturing techniques, Progress in Aerospace Sciences, 55 (2012) 1–16.CrossRefGoogle Scholar
  10. [10]
    F. Klocke, L. Settineri, D. Lung, P. C. Priarone and M. Arft, High performance cutting of gamma titanium aluminides: Influence of lubricoolant strategy on tool wear and surface integrity, Wear, 302 (2013) 1136–1144.CrossRefGoogle Scholar
  11. [11]
    P. C. Priarone, S. Rizzuti, L. Settineri and G. Vergnano, Effects of cutting angle, edge preparation, and nanostructured coating on milling performance of a gamma titanium aluminide, Journal of Materials Processing Technology, 212 (2012) 2619–2628.CrossRefGoogle Scholar
  12. [12]
    P. C. Priarone, S. Rizzuti, S. Ruffa and L. Settineri, Drilling experiments on a gamma titanium aluminide obtained via electron beam melting, Int. J. Adv. Manuf. Technol., 69 (2013) 483–490.CrossRefGoogle Scholar
  13. [13]
    A. R. C. Sharman, D. K. Aspinwall, R. C. Dewes and P. Bowen, Workpiece surface integrity considerations when finish turning gamma titanium aluminide, Wear, 249 (2001) 473–481.CrossRefGoogle Scholar
  14. [14]
    S. A. Bentley, A. L. Mantle and D. K. Aspinwall, The effect of machining on the fatigue strength of a gamma titanium aluminide intertmetallic alloy, Intermetallics, 7 (1999) 967–969.CrossRefGoogle Scholar
  15. [15]
    A. Beranoagirre and L. N. López de Lacalle, Topography prediction on Milling of emerging aeronautical Ti alloys, Physics Procedia, 22 (2011) 136–143.CrossRefGoogle Scholar
  16. [16]
    A. Beranoagirre and L. N. López de Lacalle, Grinding of gamma TiAl intermetallic alloys, Procedia Engineering, 63 (2013) 489–498.CrossRefGoogle Scholar
  17. [17]
    R. Hood, D. K. Aspinwall, S. L. Soo, A. L. Mantle and D. Novovic, Workpiece surface integrity when slot milling g-TiAl intermetallic alloy, CIRP Annals -Manufacturing Technology, 63 (2014) 53–56.CrossRefGoogle Scholar
  18. [18]
    L. Zhu and Y. Chen, Study on the cutting performance and machinability of gamma titanium aluminide, Journal of Applied Sciences, 13 (18) (2013) 3774–3777.CrossRefGoogle Scholar
  19. [19]
    R. Biswas, A. S. Kuar and S. Mitr, Multi-objective optimization of hole characteristics during pulsed Nd:YAG laser microdrilling of gamma-titanium aluminide alloy sheet, Optics and Lasers in Engineering, 60 (2014) 1–11.CrossRefGoogle Scholar
  20. [20]
    B. Jabbaripoura, M. H. Sadeghia, M. R. Shabgardb and H. Faraji, Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of y-TiAl intermetallics, Journal of Manufacturing Processes, 15 (2013) 56–68.CrossRefGoogle Scholar
  21. [21]
    S. Sarkar, S. Mitra and B. Bhattacharyya, Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model, Int. J. Adv. Manuf. Technol., 27 (2006) 501–508.CrossRefGoogle Scholar
  22. [22]
    S. Mitra, G. Paul and S. S. Nagahanumaiah, Experimental study on influence of process variables on crater dimensions in micro-EDM of γ -Titanium Aluminide, AMPT (2010).Google Scholar
  23. [23]
    D. Clifton, A. R. Mount, D. J. Jardine and R. Roth, Electrochemical machining of gamma titanium aluminide intermetallics, Journal of Materials Processing Technology, 108 (2001) 338–348.CrossRefGoogle Scholar
  24. [24]
    T. Mihai, B. Alexandra, V. Aurelian, I. Nicolae, P. Alexandru and S. Alexandru, Study on processing of titanium aluminide alloy using electrical discharge machining, Applied Mechanics and Materials, 657 (2014) 311–315.CrossRefGoogle Scholar
  25. [25]
    S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro and C. Badini, Electron beam melting of Tie48Ale2Cre2Nb alloy: Microstructure and mechanical properties investigation, Intermetallics, 19 (2011) 776–781.CrossRefGoogle Scholar
  26. [26]
    J. Schwerdtfeger and C. Körner, Selective electron beam melting of Tie48Ale2Nbe2Cr: Microstructure and aluminium loss, Intermetallics, 49 (2014) 29–35.CrossRefGoogle Scholar
  27. [27]
    L. E. Murr, S. M. Gaytan, A. Ceylan, E. Martinez, J. L. Martinez, D. H. Hernandez, B. I. Machado, D. A. Ramirez, F. Medina, S. Collins and R. B. Wicker, Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting, Acta Materialia, 58 (2010) 1887–1894.CrossRefGoogle Scholar
  28. [28]
    W. Ge, C. Guo and F. Lin, Effect of process parameters on microstructure of TiAl alloy produced by electron beam selective melting, Procedia Engineering, 81 (2014) 1192–1197.CrossRefGoogle Scholar
  29. [29]
    M. Terner, S. Biamino, P. Epicoco, A. Penna, O. Hedin, S. Sabbadini, P. Fino, M. Pavese, U. Ackelid, P. Gennaro, F. Pelissero and C. Badini, Electron beam melting of high niobium containing TiAl alloy: Feasibility investigation, Steel Research Int., 83 (2012) 10.CrossRefGoogle Scholar
  30. [30]
    A. R. Rastkar and B. Shokri, Surface transformation of Ti-45Al-2Nb-2Mn-1B titanium aluminide by electron beam melting, Surface & Coatings Technology, 204 (2010) 1817–1822.CrossRefGoogle Scholar
  31. [31]
    P. C. Priarone, S. Ruffa, J. S. Bedolla and L. Settineri, A DoE approach to hole quality evaluation in drilling of an electron beam melted titanium aluminide, Procedia CIRP, 8 (2013) 481–486.CrossRefGoogle Scholar
  32. [32]
    P. C. Priarone, S. Rizzuti, G. Rotella and L. Settineri, Tool wear and surface quality in milling of a gamma-TiAl intermetallic, Int. J. Adv. Manuf. Technol., 61 (2012) 25–33.CrossRefGoogle Scholar
  33. [33]
    http://www.arcam.com/wp-content/uploads/arcam-a2x.pdf.Google Scholar
  34. [34]
    http://www.sandvik.coromant.com/en-gb/pages/default.aspx.Google Scholar
  35. [35]
    A. M. A. Al-Ahmari, Prediction and optimisation models for turning operations, International Journal of Production Research, 46 (2008) 4061–4081.CrossRefMATHGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Abdulrahman Al-Ahmari
    • 1
    • 2
  • Mohammad Ashfaq
    • 1
  • Abdullah Alfaify
    • 2
  • Basem Abdo
    • 1
  • Abdulrahman Alomar
    • 2
  • Abdelnaser Dawud
    • 2
  1. 1.FARCAMT Chair, Advanced Manufacturing InstituteKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Industrial Engineering Department, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations