Predicting surface quality of γ-TiAl produced by additive manufacturing process using response surface method
- 347 Downloads
Abstract
Electron beam melting (EBM) has been found to be a promising technology for producing complex shaped parts from gamma titanium aluminide alloys (γ-TiAl). The parts produced by this process are projected to have dimensions very close to the desired final shapes. However, the surface roughness of the parts produced by EBM is excessively rough. In many applications, it is necessary to improve the quality of manufactured parts using a convenient post process. This paper determines process parameters of end milling when it is used as a post process for the parts produced by EBM. Design of experiments has been used to study the effect of the selected input parameters of end milling (spindle speed, feed rate, depth of cut and coolant type) on the surface roughness of γ-TiAl parts. Response surface methodology is used to develop a predictive model for surface roughness. Effects of the selected milling process are investigated. This paper also optimizes the selected process parameters to minimize the value of the obtained surface roughness.
Keywords
EBM process End milling Response surface method Factorial design Surface qualityPreview
Unable to display preview. Download preview PDF.
References
- [1]www.wohlersassociates.com.Google Scholar
- [2]G. Sauthoff, Intermetallics, Weinheim; New York (1995).CrossRefGoogle Scholar
- [3]C. M. Austin, Current status of gamma Ti aluminides for aerospace applications, Current Opinion in Solid State and Materials Science, 4 (1999) 239–242.CrossRefGoogle Scholar
- [4]E. A. Loria, Gamma titanium aluminides as prospective structural materials, Intermetallics, 8 (2000) 133–1345.CrossRefGoogle Scholar
- [5]K. Kothari, R. Radhakrishnan, N. M. Wereley and T. S. Sudarshan, Microstructure and mechanical properties of consolidated gamma titanium aluminides, Powder Metallurgy, 50 (1) (2007) 21–7.CrossRefGoogle Scholar
- [6]D. Hu, X. Wu and M. H. Loretto, Advances in optimisation of mechanical properties in cast TiAl alloys, Intermetallics, 13 (91) (2005) 4–9.Google Scholar
- [7]D. K. Aspinwal, R. C. Dewes and A. L. Mantle, The machining of y-TiAl intermetallic alloys, CIRP Annals -Manufacturing Technology, 54 (1) (2005) 99–104.CrossRefGoogle Scholar
- [8]www.arcam.com.Google Scholar
- [9]K. Kothari, R. Radhakrishnan and N. M. Wereley, Advances in gamma titanium aluminides and their manufacturing techniques, Progress in Aerospace Sciences, 55 (2012) 1–16.CrossRefGoogle Scholar
- [10]F. Klocke, L. Settineri, D. Lung, P. C. Priarone and M. Arft, High performance cutting of gamma titanium aluminides: Influence of lubricoolant strategy on tool wear and surface integrity, Wear, 302 (2013) 1136–1144.CrossRefGoogle Scholar
- [11]P. C. Priarone, S. Rizzuti, L. Settineri and G. Vergnano, Effects of cutting angle, edge preparation, and nanostructured coating on milling performance of a gamma titanium aluminide, Journal of Materials Processing Technology, 212 (2012) 2619–2628.CrossRefGoogle Scholar
- [12]P. C. Priarone, S. Rizzuti, S. Ruffa and L. Settineri, Drilling experiments on a gamma titanium aluminide obtained via electron beam melting, Int. J. Adv. Manuf. Technol., 69 (2013) 483–490.CrossRefGoogle Scholar
- [13]A. R. C. Sharman, D. K. Aspinwall, R. C. Dewes and P. Bowen, Workpiece surface integrity considerations when finish turning gamma titanium aluminide, Wear, 249 (2001) 473–481.CrossRefGoogle Scholar
- [14]S. A. Bentley, A. L. Mantle and D. K. Aspinwall, The effect of machining on the fatigue strength of a gamma titanium aluminide intertmetallic alloy, Intermetallics, 7 (1999) 967–969.CrossRefGoogle Scholar
- [15]A. Beranoagirre and L. N. López de Lacalle, Topography prediction on Milling of emerging aeronautical Ti alloys, Physics Procedia, 22 (2011) 136–143.CrossRefGoogle Scholar
- [16]A. Beranoagirre and L. N. López de Lacalle, Grinding of gamma TiAl intermetallic alloys, Procedia Engineering, 63 (2013) 489–498.CrossRefGoogle Scholar
- [17]R. Hood, D. K. Aspinwall, S. L. Soo, A. L. Mantle and D. Novovic, Workpiece surface integrity when slot milling g-TiAl intermetallic alloy, CIRP Annals -Manufacturing Technology, 63 (2014) 53–56.CrossRefGoogle Scholar
- [18]L. Zhu and Y. Chen, Study on the cutting performance and machinability of gamma titanium aluminide, Journal of Applied Sciences, 13 (18) (2013) 3774–3777.CrossRefGoogle Scholar
- [19]R. Biswas, A. S. Kuar and S. Mitr, Multi-objective optimization of hole characteristics during pulsed Nd:YAG laser microdrilling of gamma-titanium aluminide alloy sheet, Optics and Lasers in Engineering, 60 (2014) 1–11.CrossRefGoogle Scholar
- [20]B. Jabbaripoura, M. H. Sadeghia, M. R. Shabgardb and H. Faraji, Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of y-TiAl intermetallics, Journal of Manufacturing Processes, 15 (2013) 56–68.CrossRefGoogle Scholar
- [21]S. Sarkar, S. Mitra and B. Bhattacharyya, Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model, Int. J. Adv. Manuf. Technol., 27 (2006) 501–508.CrossRefGoogle Scholar
- [22]S. Mitra, G. Paul and S. S. Nagahanumaiah, Experimental study on influence of process variables on crater dimensions in micro-EDM of γ -Titanium Aluminide, AMPT (2010).Google Scholar
- [23]D. Clifton, A. R. Mount, D. J. Jardine and R. Roth, Electrochemical machining of gamma titanium aluminide intermetallics, Journal of Materials Processing Technology, 108 (2001) 338–348.CrossRefGoogle Scholar
- [24]T. Mihai, B. Alexandra, V. Aurelian, I. Nicolae, P. Alexandru and S. Alexandru, Study on processing of titanium aluminide alloy using electrical discharge machining, Applied Mechanics and Materials, 657 (2014) 311–315.CrossRefGoogle Scholar
- [25]S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro and C. Badini, Electron beam melting of Tie48Ale2Cre2Nb alloy: Microstructure and mechanical properties investigation, Intermetallics, 19 (2011) 776–781.CrossRefGoogle Scholar
- [26]J. Schwerdtfeger and C. Körner, Selective electron beam melting of Tie48Ale2Nbe2Cr: Microstructure and aluminium loss, Intermetallics, 49 (2014) 29–35.CrossRefGoogle Scholar
- [27]L. E. Murr, S. M. Gaytan, A. Ceylan, E. Martinez, J. L. Martinez, D. H. Hernandez, B. I. Machado, D. A. Ramirez, F. Medina, S. Collins and R. B. Wicker, Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting, Acta Materialia, 58 (2010) 1887–1894.CrossRefGoogle Scholar
- [28]W. Ge, C. Guo and F. Lin, Effect of process parameters on microstructure of TiAl alloy produced by electron beam selective melting, Procedia Engineering, 81 (2014) 1192–1197.CrossRefGoogle Scholar
- [29]M. Terner, S. Biamino, P. Epicoco, A. Penna, O. Hedin, S. Sabbadini, P. Fino, M. Pavese, U. Ackelid, P. Gennaro, F. Pelissero and C. Badini, Electron beam melting of high niobium containing TiAl alloy: Feasibility investigation, Steel Research Int., 83 (2012) 10.CrossRefGoogle Scholar
- [30]A. R. Rastkar and B. Shokri, Surface transformation of Ti-45Al-2Nb-2Mn-1B titanium aluminide by electron beam melting, Surface & Coatings Technology, 204 (2010) 1817–1822.CrossRefGoogle Scholar
- [31]P. C. Priarone, S. Ruffa, J. S. Bedolla and L. Settineri, A DoE approach to hole quality evaluation in drilling of an electron beam melted titanium aluminide, Procedia CIRP, 8 (2013) 481–486.CrossRefGoogle Scholar
- [32]P. C. Priarone, S. Rizzuti, G. Rotella and L. Settineri, Tool wear and surface quality in milling of a gamma-TiAl intermetallic, Int. J. Adv. Manuf. Technol., 61 (2012) 25–33.CrossRefGoogle Scholar
- [33]http://www.arcam.com/wp-content/uploads/arcam-a2x.pdf.Google Scholar
- [34]http://www.sandvik.coromant.com/en-gb/pages/default.aspx.Google Scholar
- [35]A. M. A. Al-Ahmari, Prediction and optimisation models for turning operations, International Journal of Production Research, 46 (2008) 4061–4081.CrossRefMATHGoogle Scholar