Journal of Mechanical Science and Technology

, Volume 29, Issue 11, pp 4807–4816 | Cite as

Stress-diffusion coupled multiscale analysis of Si anode for Li-ion battery†

Article

Abstract

Silicon (Si) is one of the most promising anodes for next-generation lithium (Li)-ion batteries because of its high capacity. However, the commercial uses of Si anodes are hindered by extremely poor cycling stability caused by huge volume expansion during charging and discharging processes as well as by a change in material properties according to Li concentration. Given these reasons, we propose the multiscale analysis of Si nanowire anode using a diffusion-induced stress model with Li concentration effects, such as softening of mechanical modulus and enhancement of Li diffusion. From the geometry context, the diffusion-induced stress model exhibits stress relaxation during the lithiation and optimal condition of the Si nanowire. We then construct an approximated stress criteria equation for the safe operation of Si nanowire of various sizes and shapes. Our multiscale analysis predicts the various types of Si nanowire, including holecaped Si nanowires, which are beneficial to mechanical stability. This study provides insights into the physics of Li-Si compound behaviors and introduces the possibility of developing Si-based anodes with mechanical stability.

Keywords

Diffusion-induced stress Li-ion battery Multiscale analysis Si anode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause and J. R. Dahn, Colossal reversible volume changes in lithium alloys, Electrochemical and Solid State Letters, 4 (2001) A137–A140.CrossRefGoogle Scholar
  2. [2]
    J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359–367.CrossRefGoogle Scholar
  3. [3]
    M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev., 105 (2005) 1021–1021.CrossRefGoogle Scholar
  4. [4]
    M. N. Obrovac, L. Christensen, D. B. Le and J. R. Dahnb, Alloy design for lithium-ion battery anodes, Journal of the Electrochemical Society, 154 (2007) A849–A855.CrossRefGoogle Scholar
  5. [5]
    C. M. Park, J. H. Kim, H. Kim and H. J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chemical Society Reviews, 39 (2010) 3115–3141.CrossRefGoogle Scholar
  6. [6]
    J. W. Kim, J. H. Ryu, K. T. Lee and S. M. Oh, Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries, Journal of Power Sources, 147 (2005) 227–233.CrossRefGoogle Scholar
  7. [7]
    M. N. Obrovac and V. L. Chevrier, Alloy negative electrodes for Li-ion batteries, Chem. Rev., 114 (2014) 11444–11502.CrossRefGoogle Scholar
  8. [8]
    C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nature Nanotechnology, 3 (2008) 31–35.CrossRefGoogle Scholar
  9. [9]
    J. Y. Kwon, J. H. Ryu and S. M. Oh, Performance of electrochemically generated Li21Si5 phase for lithium-ion batteries, Electrochimica Acta, 55 (2010) 8051–8055.CrossRefGoogle Scholar
  10. [10]
    Q. Zhang, W. Zhang, W. Wan, Y. Cui and E. Wang, Lithium insertion in silicon nanowires: An ab initio study, Nano Letters, 10 (2010) 3243–3249.CrossRefGoogle Scholar
  11. [11]
    N. A. Liu, L. B. Hu, M. T. McDowell, A. Jackson and Y. Cui, Prelithiated silicon nanowires as an anode for lithium ion batteries, Acs Nano, 5 (2011) 6487–6493.CrossRefGoogle Scholar
  12. [12]
    N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. M. Wang and Y. Cui, A yolk-shell design for stabilized and scalable li-ion battery alloy anodes, Nano Letters, 12 (2012) 3315–3321.CrossRefGoogle Scholar
  13. [13]
    Y. F. Gao, M. Cho and M. Zhou, Mechanical reliability of alloy-based electrode materials for rechargeable Li-ion batteries, Journal of Mechanical Science and Technology, 27 (2013) 1205–1224.CrossRefGoogle Scholar
  14. [14]
    B. Key, M. Morcrette, J.-M. Tarascon and C. P. Grey, Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: Understanding the (De)lithiation mechanisms, Journal of the American Chemical Society, 133 (2010) 503–512.CrossRefGoogle Scholar
  15. [15]
    J. Christensen and J. Newman, Stress generation and fracture in lithium insertion materials, Journal of Solid State Electrochemistry, 10 (2006) 293–319.CrossRefGoogle Scholar
  16. [16]
    J. C. Li, A. K. Dozier, Y. C. Li, F. Q. Yang and Y. T. Cheng, Crack pattern formation in thin film lithium-ion battery electrodes, Journal of the Electrochemical Society, 158 (2011) A689–A694.CrossRefGoogle Scholar
  17. [17]
    K. J. Zhao, M. Pharr, J. J. Vlassak and Z. G. Suo, Inelastic hosts as electrodes for high-capacity lithium-ion batteries, Journal of Applied Physics, 109 (2011).Google Scholar
  18. [18]
    Z. W. Cui, F. Gao and J. M. Qu, A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries, Journal of the Mechanics and Physics of Solids, 60 (2012) 1280–1295.CrossRefMathSciNetGoogle Scholar
  19. [19]
    Y. F. Gao, M. Cho and M. Zhou, Stress relaxation through interdiffusion in amorphous lithium alloy electrodes, Journal of the Mechanics and Physics of Solids, 61 (2013) 579–596.CrossRefMATHGoogle Scholar
  20. [20]
    S. Chang, J. Moon, K. Cho and M. Cho, Multiscale analysis of prelithiated silicon nanowire for Li-ion battery, Computational Materials Science, 98 (2015) 99–104.CrossRefGoogle Scholar
  21. [21]
    J. Moon, B. Lee, M. Cho and K. Cho, Ab initio and kinetic Monte Carlo simulation study of lithiation in crystalline and amorphous silicon, Journal of Power Sources, 272 (2014) 1010–1017.CrossRefGoogle Scholar
  22. [22]
    I. Ryu, J. W. Choi, Y. Cui and W. D. Nix, Size-dependent fracture of Si nanowire battery anodes, Journal of the Mechanics and Physics of Solids, 59 (2011) 1717–1730.CrossRefGoogle Scholar
  23. [23]
    X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu and J. Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, Acs Nano, 6 (2012) 1522–1531.CrossRefGoogle Scholar
  24. [24]
    R. Deshpande, Y. Qi and Y. T. Cheng, Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications, Journal of the Electrochemical Society, 157 (2010) A967–A971.CrossRefGoogle Scholar
  25. [25]
    A. F. Bower, P. R. Guduru and V. A. Sethuraman, A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell, Journal of the Mechanics and Physics of Solids, 59 (2011) 804–828.CrossRefMathSciNetMATHGoogle Scholar
  26. [26]
    M. S. Park, E. Park, J. Lee, G. Jeong, K. J. Kim, J. H. Kim, Y. J. Kim and H. Kim, Hydrogen silsequioxane-derived Si/SiOx Nanospheres for high-capacity lithium storage materials, ACS Appl. Mater. Interfaces, 6 (2014) 9608–9613.CrossRefGoogle Scholar
  27. [27]
    J. Moon, K. Cho and M. Cho, Ab-initio study of silicon and tin as a negative electrode materials for lithium-ion batteries, International Journal of Precision Engineering and Manufacturing, 13 (2012) 1191–1197.CrossRefGoogle Scholar
  28. [28]
    V. B. Shenoy, P. Johari and Y. Qi, Elastic softening of amorphous and crystalline Li-Si Phases with increasing Li concentration: A first-principles study, Journal of Power Sources, 195 (2010) 6825–6830.CrossRefGoogle Scholar
  29. [29]
    K. Kim, J. Moon, J. Lee, J.-S. Yu, M. Cho, K. Cho, M.-S. Park, J.-H. Kim and Y.-J. Kim, Mechanochemically reduced SiO2 by Ti incorporation as lithium storage materials, Chem. Sus. Chem., 8 (2015) 3111–3117.CrossRefGoogle Scholar
  30. [30]
    J. W. Wang, Y. He, F. F. Fan, X. H. Liu, S. M. Xia, Y. Liu, C. T. Harris, H. Li, J. Y. Huang, S. X. Mao and T. Zhu, Two-phase electrochemical lithiation in amorphous silicon, Nano Letters, 13 (2013) 709–715.CrossRefGoogle Scholar
  31. [31]
    M. T. McDowell, S. W. Lee, J. T. Harris, B. A. Korgel, C. M. Wang, W. D. Nix and Y. Cui, In Situ TEM of two-phase lithiation of amorphous silicon nanospheres, Nano Letters, 13 (2013) 758–764.CrossRefGoogle Scholar
  32. [32]
    Z. W. Cui, F. Gao, Z. H. Cui and J. M. Qu, A second nearest-neighbor embedded atom method interatomic potential for Li-Si alloys, Journal of Power Sources, 207 (2012) 150–159.CrossRefGoogle Scholar
  33. [33]
    A. S. Fedorov, Z. I. Popov, A. A. Kuzubov and S. G. Ovchinnikov, Theoretical study of the diffusion of lithium in crystalline and amorphous silicon, Jetp Letters, 95 (2012) 143–147.CrossRefGoogle Scholar
  34. [34]
    G. A. Tritsaris, K. Zhao, O. U. Okeke and E. Kaxiras, Diffusion of lithium in bulk amorphous silicon: A theoretical study, The Journal of Physical Chemistry C, 116 (2012) 22212–22216.CrossRefGoogle Scholar
  35. [35]
    X. C. Zhang, W. Shyy and A. M. Sastry, Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles, Journal of the Electrochemical Society, 154 (2007) A910–A916.CrossRefGoogle Scholar
  36. [36]
    T. H. H. Pian, Finite elements based on consistently assumed stresses and displacements, Finite Elements in Analysis and Design, 1 (1985) 131–140.CrossRefMATHGoogle Scholar
  37. [37]
    S. W. Lee, M. T. McDowell, J. W. Choi and Y. Cui, Anomalous shape changes of silicon nanopillars by electro-chemical lithiation, Nano Letters, 11 (2011) 3034–3039.CrossRefGoogle Scholar
  38. [38]
    M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui and J. Cho, Silicon nanotube battery anodes, Nano Letters, 9 (2009) 3844–3847.CrossRefGoogle Scholar
  39. [39]
    L. B. Hu, H. Wu, Y. F. Gao, A. Y. Cao, H. B. Li, J. McDough, X. Xie, M. Zhou and Y. Cui, Silicon-carbon nanotube coaxial sponge as li-ion anodes with high areal capacity, Advanced Energy Materials, 1 (2011) 523–527.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations