Advertisement

Journal of Mechanical Science and Technology

, Volume 29, Issue 12, pp 5317–5324 | Cite as

MHD mixed convection slip flow in a vertical parallel plate microchannel heated at asymmetric and uniform heat flux

  • Mehdi Moslehi
  • Mohsen Saghafian
Article

Abstract

Developing steady laminar flow and mixed convection heat transfer of a Newtonian conducting fluid in an open-ended vertical parallel plate microchannel under the effect of a uniform magnetic field are numerically studied. The effects of the modified mixed convection parameter, \(\frac{{Gr}} {{Re}}\), the Hartmann number, M, the Knudsen number, Kn, and the heat flux ratio, rq, on the velocity and temperature profile are investigated. It is revealed that the velocity profile is strongly influenced by magnetic field. In fact, with an increase in the Hartmann number the velocity decreases for both Kn = 0 and 0.1 and for all mixed convection parameter values. The effect of magnetic force on the velocity profile is stronger, with respect to the temperature profile. In addition, with an increase in M, the slip velocity increases on both hot and cold walls for rq = 0 and rq = 1. It is observed that the friction factor coefficient has significant increases with an increase in the Hartmann number.

Keywords

MHD Mixed convection Slip flow Microchannel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. B. Duncan and G. P. Peterson, Review of microscale heat transfer, Appl. Mech. Rev., 46 (1994) 397–428.CrossRefGoogle Scholar
  2. [2]
    C.-M. Ho and Y.-C. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows, Ann. Rev. Fluid Mech., 30 (1998) 579–612.CrossRefGoogle Scholar
  3. [3]
    S. G. Kandlikar, S. Garimella, D. Li, S. Colin and M. R. King, Heat transfer and fluid flow in microchannels and microtubes, Elsevier Ltd., Oxford, UK (2006).Google Scholar
  4. [4]
    S. G. Kandlikar and A. V. Bapat, Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal, Heat Transf. Eng., 28 (2007) 911–923.CrossRefGoogle Scholar
  5. [5]
    C. Kleinstreuer, J. Li and J. Koo, Microfluidics of nano-drug delivery, Int. J. Heat Mass Transf., 51 (2008) 5590–5597.CrossRefzbMATHGoogle Scholar
  6. [6]
    N. Riley, Magnetohydrodynamic free convection, J. Fluid Mech., 18 (1964) 577.CrossRefMathSciNetzbMATHGoogle Scholar
  7. [7]
    K. R. Singh and T. G. Cowling, Thermal convection in magnetohydrodynamics, J. Mech. Appl. Math., 16 (1963) 1.CrossRefMathSciNetzbMATHGoogle Scholar
  8. [8]
    H. H. Woodson and J. R Melcher, Electrmechanical dynamics, Wiley, New York (1996) Voll. III.Google Scholar
  9. [9]
    P. A. Davidson, An introduction to magnetohydrodynamics, Cambridge University Press, Cambridge (2001).CrossRefzbMATHGoogle Scholar
  10. [10]
    A. G. Beskok, E. Karniadakis and W. Trimmer, Rarefaction and compressibility effects in gas microflows, Journal of Fluid Engineering, 118 (1996) 448–456.CrossRefGoogle Scholar
  11. [11]
    S. A. Schaaf and P. L. Chambre, Flow of rarefied gases, Princeton University Press, Princeton, 2 (1961).Google Scholar
  12. [12]
    H. A. Mohammed, G. Bhaskaran, N. H. Shuaib and R. Saidur, Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: a review, Renew. Sustain. Energy Rev., 15 (2011) 1502–1512.CrossRefGoogle Scholar
  13. [13]
    N. T. Obot, Toward a better understanding of friction and heat/mass transfer in microchannels e a literature review, Microscale Thermophys. Eng., 6 (2002) 155–173.CrossRefGoogle Scholar
  14. [14]
    A. A. Rostami, A. S. Mujumdar and N. Saniei, Flow and heat transfer for gas flowing in microchannels, Heat Mass Transf., 38 (2002) 359–367.CrossRefGoogle Scholar
  15. [15]
    M. Avci and O. Aydin, Mixed convection in a vertical parallel plate microchannel, Journal of Heat Transfer, 129 (2) (2007) 162–166.CrossRefGoogle Scholar
  16. [16]
    M. Avci and O. Aydin, Mixed convection in a vertical parallel plate microchannel with asymmetric wall heat fluxes, Journal of Heat Transfer, 129 (8) (2007) 1091–1095.CrossRefGoogle Scholar
  17. [17]
    H. C. Weng and C. K. Chen, On the importance of thermal creep in natural convective gas microflow with wall heat fluxes, J. Phys. D: Appl. Phys., 41 (2008) 115501.CrossRefGoogle Scholar
  18. [18]
    F. S. Ibrahim and F. M., Hady, Mixed convection over a horizontal plate with vectored mass transfer in a transverse magnetic field, Astrophysics and Space Science, 114 (2) (1985) 335–344.CrossRefzbMATHGoogle Scholar
  19. [19]
    RSR. Gorla, B. Ghorashi and P Wangskarn, Mixed Convection in Vertical Internal Flow of a Micropolar Fluid, International Journal of Engineering Science, 27 (12) (1989) 1553–1561.CrossRefGoogle Scholar
  20. [20]
    L. Biswal, S. K. Som and S. Chakraborty, Effects of entrance region transport processes on free convection slip flow in vertical microchannels with isothermally heated walls, Int. J. Heat Mass Transf., 50 (2007) 1248–1254.CrossRefzbMATHGoogle Scholar
  21. [21]
    B. Reddappa, P. B. A. Reddy and K. R. K. Prasad, Mixed convection in a vertical parallel plate microchannel with asymmetric wall heat fluxes under the effect of a magnetic field, Int. J. of. Math. Arch., 2 (7) (2011) 1140–1148.Google Scholar
  22. [22]
    L. H. Krishna, E. K. Reddy and K. J. Pillai, Hydromagnetic mixed convection in a vertical parallel plate microchannel, Int. J. of Appl. Math and Mech., 7 (11) (2011) 69–82.zbMATHGoogle Scholar
  23. [23]
    H. Niazmand and B. Rahimi, Mixed convection slip flows in a vertical parallel plate microchannel with symmetric and asymmetric wall heat fluxes, Transactions of the Canadian Society for Mechanical Engineering, 36 (3) (2011).Google Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations