Advertisement

Journal of Mechanical Science and Technology

, Volume 28, Issue 9, pp 3709–3718 | Cite as

Effect of thermal non-equilibrium on transient hydromagnetic flow over a moving surface in a nanofluid saturated porous media

  • M. Muthtamilselvan
  • D. Prakash
  • Deog-Hee Doh
Article

Abstract

This work is made to study the effect of local thermal non-equilibrium (LTNE) on transient MHD laminar boundary layer flow of viscous, incompressible nanofluid over a vertical stretching plate embedded in a sparsely packed porous medium. The flow in the porous medium is governed by simple Darcy model. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. Three temperature model is used to represent the local thermal non-equilibrium among the particle, fluid, and solid-matrix phases. By applying similarity analysis, the governing partial differential equations are transformed into a set of time dependent nonlinear coupled ordinary differential equations and they are solved by Runge-Kutta Fehlberg Method along with shooting technique. Numerical results of the boundary layer flow characteristics for the fluid, particle and solid phases are obtained for various combinations of the physical parameters. It is found that the thermal non-equilibrium effects are strongest when the fluid/particle, fluid/solid Nield numbers and thermal capacity ratios are small. Moreover, the amount of heat transfer is maximum in nanoparticles than that of fluid and solid phases because of enhancement of thermal conductivity in nanofluids.

Keywords

Local thermal non-equilibrium (LTNE) MHD Nanofluid Three temperature model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. A. Nield and A. Bejan, Convection in porous media, Springer, New York (2013).CrossRefzbMATHGoogle Scholar
  2. [2]
    S. Choi, Enhancing thermal conductivity of fluids with nanoparticle in: D.A. Siginer, H. P. Wang (Eds.), Developments and applications of non-newtonian flows, ASME MD, vol. 231 and FED 66 (1995) 99–105.Google Scholar
  3. [3]
    H. Masuda, A. Ebata, K. Teramae and N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles, Netsu Bussei, 7 (1993) 227–233.CrossRefGoogle Scholar
  4. [4]
    J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transf., 128 (2006) 240–250.CrossRefGoogle Scholar
  5. [5]
    M. Muthtamilselvan and R. Rakkiyappan, Mixed convection in a lid-driven square cavity filled with nanofluids, Nanomech. Sci. Tech.: An Int. Journal, 2 (2011) 275–294.Google Scholar
  6. [6]
    G. A. Sheikhzadeh, M. Nikfar and A. Fattahi, Numerical study of natural convection and entropy generation of Cu-water nanofluid around an obstacle in a cavity, J. Mech. Sci. Tech., 26 (2012) 3347–3356.CrossRefGoogle Scholar
  7. [7]
    M. Muthtamilselvan and D. H. Doh, Magnetic field effect on mixed convection in a lid-driven square cavity filled with nanofluids, J. Mech. Sci. Tech., 28 (2014) 137–143.CrossRefGoogle Scholar
  8. [8]
    A. V. Kuznetsov and D. A. Nield, Natural convective boundary layer flow of a nanofluid past a vertical plate, Int. J. Therm. Sci., 49 (2010) 243–247.CrossRefGoogle Scholar
  9. [9]
    A. V. Kuznetsov and D. A. Nield, Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate, Int. J. Therm. Sci., 50 (2011) 712–717.CrossRefGoogle Scholar
  10. [10]
    P. Rana and R. Bhargava, Numerical study of heat transfer enhancement in mixed convection flow along a vertical plate with heat source/sink utilizing nanofluids, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011) 4318–4334.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    F. M. Hady, F. S. Ibrahim, S. M. Abdel-Gaied and M. R. Eid, Influence of yield stress on free convective boundary-layer flow of a non-Newtonian nanofluid past a vertical plate in a porous medium, J. Mech. Sci. Tech., 25 (2011) 2043–2050.CrossRefGoogle Scholar
  12. [12]
    A. Aziz and W. A. Khan, Natural convective boundary layer flow of a nanofluid past a convectively heated vertical plate, Int. J. Therm. Sci., 52 (2012) 83–90.CrossRefGoogle Scholar
  13. [13]
    A. Noghrehabadi, M. R. Saffarian, R. Pourrajab and M. Ghalambaz, Entropy analysis for nanofluid flow over a stretching sheet in the presence of heat generation/absorption and partial slip, J. Mech. Sci. Tech., 27 (2013) 927–937.CrossRefGoogle Scholar
  14. [14]
    W. Ibrahim and B. Shankar, MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions, Computers & Fluids, 75 (2013) 1–10.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    L. Zheng, C. Zhang, X. Zhang and J. Zhang, Flow and radiation heat transfer of a Nanofluid over a stretching sheet with velocity slip and temperature jump in porous medium, J. Franklin Institute, 350 (2013) 990–1007.CrossRefzbMATHGoogle Scholar
  16. [16]
    D. A. S. Rees and I. Pop, Vertical free convection boundary layer flow in a porous medium using a thermal non-equilibrium model, J. Porous Media, 3 (2001) 31–44.Google Scholar
  17. [17]
    N. H. Saeid, Analysis of mixed convection in a vertical porous layer using non-equilibrium model, Int. J. Heat Mass Transf., 47 (2004) 5619–5627.CrossRefzbMATHGoogle Scholar
  18. [18]
    A. Nouri-Borujerdi, A. R. Noghrehabadi and D. A. S. Rees, The effect of local thermal non-equilibrium on conduction in porous channels with a uniform heat source, Transp. Porous Med., 69 (2007) 281–288.MathSciNetCrossRefGoogle Scholar
  19. [19]
    M. Nazari and F. Kowsary, Analytical solution of non equilibrium heat conduction in porous medium in-corporating a variable porosity model with heat generation, J. Heat Transfer, 131 (2009) 014503.CrossRefGoogle Scholar
  20. [20]
    A. Barletta and M. Celli, Local thermal non-equilibrium flow with viscous dissipation in a plane horizontal porous layer, Int. J. Therm. Sci., 50 (2011) 53–60.CrossRefGoogle Scholar
  21. [21]
    M. Nazari, E. Shakerinejad, M. Nazari and D. A. S. Rees, Natural convection induced by a heated vertical plate embedded in a porous medium with transpiration: Local Thermal Non-equilibrium similarity solutions, Transp. Porous Med., 98 (2013) 223–238.MathSciNetCrossRefGoogle Scholar
  22. [22]
    A. V. Kuznetsov and D. A. Nield, Effect of local thermal nonequilibrium on the onset of convection in porous medium layer saturated by a nanofluid. Transp. Porous Med., 83 (2010) 425- 436.CrossRefGoogle Scholar
  23. [23]
    D. A. Nield and A. V. Kuznetsov, The effect of local thermal non-equilibrium on the onset of convection in a nanofluid, ASME J. Heat Transf., 132 (2010), 052405–7.CrossRefGoogle Scholar
  24. [24]
    B. S. Bhadauria and S. Agarwal, Convective transport in a nanofluid saturated porous layer with thermal non equilibrium model, Transp. Porous Med., 88 (2011) 107–131.MathSciNetCrossRefGoogle Scholar
  25. [25]
    S. E. Ahmed and M. M. A El-Aziz, Effect of local thermal non-equilibrium on unsteady heat transfer by natural convection of a nanofluid over a vertical wavy surface, Meccanica, 48 (2013) 33–43.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    J. H. Jang and W. M. Yan, Transient analysis of heat and mass transfer by natural convection over a vertical wavy surface. Int. J. Heat Mass Transf., 47 (2004) 3695–3705.CrossRefzbMATHGoogle Scholar
  27. [27]
    D. Prakash, M. Muthtamilselvan and D. H. Doh, Unsteady MHD non-Darcian flow over a vertical stretching plate embedded in a porous medium with non-uniform heat generation, Appl. Math. Comput., 236 (2014) 480–492.MathSciNetCrossRefGoogle Scholar
  28. [28]
    M. Muthtamilselvan, D. Prakash and D.-H. Doh, Effect of non-uniform heat generation on unsteady MHD flow over a vertical stretching surface with variable thermal conductivity, J. Mech., 30 (2014) 199–208.CrossRefGoogle Scholar
  29. [29]
    A. Pantokratoras, A common error made in investigation of boundary layer flows, Appl. Math. Modell., 33 (2009) 413–422.CrossRefzbMATHGoogle Scholar
  30. [30]
    A. Ishak, R. Nazar and I. Pop, Boundary layer flow and heat transfer over an unsteady stretching vertical surface, Meccanica, 44 (2009) 369–375.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    K. Vajravelu, K. V. Prasad and Chiu-On Ng, Unsteady convective boundary layer flow of a viscous fluid at a vertical surface with variable fluid properties, Nonlin. Anal.: Real World Appls., 14 (2013) 455–464.MathSciNetCrossRefGoogle Scholar
  32. [32]
    W. A. Khan and I. Pop, Boundary layer-flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transf., 53 (2010) 2477–2483.CrossRefzbMATHGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Applied MathematicsBharathiar UniversityCoimbatoreIndia
  2. 2.Division of Mechanical and Energy Systems Engineering, College of EngineeringKorea Maritime UniversityBusanKorea

Personalised recommendations