Journal of Mechanical Science and Technology

, Volume 28, Issue 1, pp 293–300

Near infrared reflectance spectroscopy: Moisture content measurement for ceramic plaster

  • K. M. Aguilar-Castro
  • J. J. Flores-Prieto
  • E. V. Macías-Melo
Article

Abstract

We measured moisture content of ceramic plaster using near infrared reflectance spectroscopy (NIRS) as required by the ceramic industry. The moisture content and the normalized spectral reflectance were measured and correlated at the wavelengths of the spectral absorptance peaks (αλ), spectral sensitivity peaks (Sλ) and normalized sensitivity peaks (Sλn), in the wavelength range of 900–2500 nm. The best model was obtained by the scanning method, normalizing the sensitivity and doing a minimization of the standard error of estimate (SE). The αλ-peaks, sλ-peaks and sλn-peaks were not found at the same wavelength, for the three studied wavebands. The optimal model in terms of SE was the linear model at 1420 nm (sλ-peak), for the ceramist drying range with a SE1420=1.25 (R2=0.96). The results indicate the feasibility of NIRS to non-contact moisture content measures of plaster in the studied range, even more for ceramist range.

Keywords

Near infrared reflectance spectroscopy Ceramic plaster Moisture content Non-contact measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. J. Flores, Drying plaster molds for ceramic industry, FOMIX 2004-C02-040, CENIDET-SEP, Final Project Report, Cuernavaca, Morelos, México (2004) 116.Google Scholar
  2. [2]
    V. Corluka, M. Filic, M. Mesic and Z. Valter, Near infrared based moisture meter, Proceedings of the 46th International Symposium on Electronics in Marine, Zadar, Croatia (2004) 412–417.Google Scholar
  3. [3]
    E. Martínez López, Evaluación de un medidor de contenido de humedad en granos basado en el principio de capacitancia eléctrica, Simposio de Metrología, Querétaro, México (2006) 1–6. URL: http://www.cenam.mx.Google Scholar
  4. [4]
    K. Rubner, D. Balkose and E. Robens, Methods of humidity determination Part I: Hygrometry, J. Thermal Anal. Calorimetry, 94 (2008) 669–673.CrossRefGoogle Scholar
  5. [5]
    J. A. Hernandez, G. Pavon and M. A. Garcia, Analytical solution of mass transfer equation considering shrinkage for modeling food-drying kinetics, J. Food Eng., 45 (2000) 1–10.CrossRefGoogle Scholar
  6. [6]
    J. A. Hernandez-Perez, M. A. Garcia-Alvarado, G. Trystram and B. Heyd, Neural networks for the heat and mass transfer prediction during drying of cassava and mango, Innovative Food Science and Emerging Technologies, 5 (2004) 57–64.CrossRefGoogle Scholar
  7. [7]
    A. Vega-Galvez, K. D. Scala, K. Rodriguez, R. Lemus-Mondaca, M. Miranda, J. Lopez and M. Perez-Won, Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian), Food Chemistry, 117 (2009) 647–653.CrossRefGoogle Scholar
  8. [8]
    A. Topuz, H. Feng and M. Kushad, The effect of drying method and storage on color characteristics of paprika, LWTFood Sci. Technol., 42 (2009) 1667–1673.Google Scholar
  9. [9]
    B. M. A. Amer, M. A. Hossain and K. Gottschalk, Design and performance evaluation of a new hybrid solar dryer for banana, Energy Conversion and Management, 51 (2010) 813–820.CrossRefGoogle Scholar
  10. [10]
    S. Macho Aparicio, Metodologías analíticas basadas en espectroscopia de infarrojo y calibración multivariable, Aplicación a la industria petroquímica, Tesis doctoral, Universitat Rovira I Virgili, Departament de Química Analítica i Química Orgánica, Tarragona, (2002) 218. URL: http://www.tdx.cat/bitstream/handle/10803/8981/tesissmacho.pdf?sequence=1.Google Scholar
  11. [11]
    A. Garrido, J.E. Guerrero and A. Gómez-Cabrera, Posibilidades y limitaciones de la aplicación de la técnica NIRS en la evaluación nutricional de alimentos para el ganado, Nuevas Fuentes de Alimentos para la Producción Animal IV, Junta de Andalucía, Consejería de Agricultura y Pesca, (1993) 243–255. URL: http://www.juntadeandalucia.es/export/drupaljda/1337169664NuevasFuentesdeAlimentos.pdf.Google Scholar
  12. [12]
    M. Alcala Bernandez, Utilización de la Espectroscopia NIR en el Control Analítico de la Industria Farmacéutica, Desarrollos iniciales en PAT, Tesis Doctoral, Universitat Autónoma de Barcelona, Grup de Quimiometria Aplicada, Bellaterra, (2006) 391 pages. URL: http://www.tdx.cat/bitstream/handle/10803/3227/mab1de1.pdf;jsessionid=3453452542C550C48E7C2D0DA8BAA989.tdx2?sequence=1.Google Scholar
  13. [13]
    J. W. Park, K. H. Im, D. K. Hsu, J. A. Jung and I. Y. Yang, Terahertz spectroscopy approach of the fiber orientation influence on CFRP composite solid laminates, Engineering Materials and Technology, 26 (2012) 2051–2054.Google Scholar
  14. [14]
    Hong-Seok Choi, Geun-Hwan Park, Woo-Seung Lim and Byung-min Kim, Evaluation of weldability for resistance spot welded single-lap joint between GA780DP and hotstamped 22MnB5 steel sheets, Engineering Materials and Technology, 25 (2011) 1543–1550.Google Scholar
  15. [15]
    G. Ayalew and S. M. Ward, Development of a prototype infrared reflectance moisture meter for milled peat, Comput. Electron. Agric., 28 (2000) 1–14.CrossRefGoogle Scholar
  16. [16]
    M. J. O’Mahony, S. M. Ward and J. Lynch, Small-scale prototype peat harvester, using NIR moisture content sensing Part 1: sensor development, calibration and utilization, J. Agric. Eng. Res., 70 (1998) 267–273.CrossRefGoogle Scholar
  17. [17]
    P. Williams, Influence of water on prediction of composition and quality factors: The aquaphotomics of low moisture agricultural materials, J. Near Infrared Spectroscopy, 17(6) (2009) 315–328.CrossRefGoogle Scholar
  18. [18]
    E. Carlos, A. A. Gowen, C. P. O’Donnell and G. Downey, Water absorbance pattern of physically-damaged mushrooms stored at ambient conditions, J. Near Infrared Spectroscopy, 17 (2009) 353–361.CrossRefGoogle Scholar
  19. [19]
    A. Pommerol, B. Schmitt, P. Beck and O. Brissaud, Water sorption on martian regolith analogs: Thermodynamics and near infrared reflectance spectroscopy, Icarus, 204 (2009) 114–136.CrossRefGoogle Scholar
  20. [20]
    S. Tsuchikawa, A review of recent near infrared research for wood and paper, Applied Spectroscopy Rev., 42 (2007) 43–71.CrossRefGoogle Scholar
  21. [21]
    S. Prince and S. Malarvizhi, Analysis of spectroscopic diffuse reflectance plots for different skin conditions, Spectroscopy, 24(5) (2010) 467–481.CrossRefGoogle Scholar
  22. [22]
    Kanika Singh, Kwang-Sung Lee, Donggeun Lee, Yong Ki Kim and Kyung Chun Kim, Spectroscopic techniques as a diagnostic tool for early detection of osteoporosis, J. Mech. Sci. Technol., 24(8) (2010) 1661–1668. DOI: 10.1007/ s12206-010-0524-z.CrossRefGoogle Scholar
  23. [23]
    R. Sridhar, G. Kiruthigaa, C. Manoharan, S. Dhanapandian, K. R. Murali and K. S. Kumar, The effect of growth temperatures on structural, morphological and optical properties of sprayed ZnO thin films, Asian J. Scient. Res., 5(4) (2012) 238–246.CrossRefGoogle Scholar
  24. [24]
    J. A. Cayuela, J. M. Garcia and N. Caliani, NIR prediction of fruit moisture, free acidity and oil contet in intact olives, Grasas y Aceites, 60(2) (2009) 194–202.CrossRefGoogle Scholar
  25. [25]
    C. Alvarez, E. Perez, E. Cros, M. Lares, S. Assemat, R. Boulanger and F. Davrieux, The use of near infrared spectroscopy to determine the fat, caffeine, theobromine and epicatechin contents in unfermented and sun-dried beans of Criollo cocoa, J. Near Infrared Spectroscopy, 20 (2012) 307–315.CrossRefGoogle Scholar
  26. [26]
    S. N. Jha, A. R. P. Kingsly and S. Chopra, Non-destructive determination of firmness and yellowness of mango during growth and storage using visual spectroscopy, Biosyst. Eng., 94(3) (2006) 397–402.CrossRefGoogle Scholar
  27. [27]
    N. Yee, Potato crisp moisture estimation using near infrared spectroscopy, Int. J. Food Prop., 4(2) (2001) 247–260.CrossRefGoogle Scholar
  28. [28]
    N. U. Haase, Prediction of potato processing quality by near infrared reflectance spectroscopy of ground raw tubers, J. Near Infrared Spectroscopy, 19 (2011) 37–45.CrossRefGoogle Scholar
  29. [29]
    A. G. Berezin, A. I. Nadezhdinskii, Y. Y. Ponurovskii, D. B. Stavrovskii, I. E. Vyazov, A. P. Kotkov, V. A. Ivanov, N. D. Grishnova, D. M. Polezhaev and V. A. Sidorov, Detection of moisture content in high-purity ammonia by means of diodelaser spectroscopy, Applied Physics B: Laser and Optics, 90(2) (2008) 317–321.CrossRefGoogle Scholar
  30. [30]
    S. C. H. Lam, J. W. Y. Chung, K. L. Fan and T. K. S. Wong, Non-invasive blood glucose measurement by near infrared spectroscopy: Machine drift, time drift and physiological effect, Spectroscopy, 24(6) (2010) 629–639.CrossRefGoogle Scholar
  31. [31]
    K. M. Aguilar-Castro, J. J. Flores-Prieto, M. E. Baltazar-Lopez and E. V. Macias-Melo, Design and experimental evaluation of a mixed-mode continuous solar dryer for plaster molds, J. Mech. Sci. Technol., 26(9) (2012) 2969–2976.CrossRefGoogle Scholar
  32. [32]
    CIE-130, Practical methods for the measurement of reflectance and transmittance, Technical Report No. 130, Commission International de L’Eclairage (1998) 66.Google Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • K. M. Aguilar-Castro
    • 1
  • J. J. Flores-Prieto
    • 1
  • E. V. Macías-Melo
    • 1
  1. 1.Mech. Engin. Depart. Int. Internado Palmira S/N, Centro Nacional de Investigación y Desarrollo TecnológicoCENIDET-DGEST-SEP, Col. PalmiraCuernavaca, MorelosMéxico

Personalised recommendations