Journal of Mechanical Science and Technology

, Volume 27, Issue 11, pp 3439–3444 | Cite as

Highly uniform and controllable micropatterning of a hydrogel on microcantilevers

Article

Abstract

This paper reports a novel method for highly controllable local patterning of a hydrogel on microcantilevers. We constructed a dynamic mask lithography setup based on a commercial beam projector and a 3-axis microstage. Dynamic masks generated from the beam projector controlled the shape, size, and position of hydrogel patterns while the 3-axis microstage mainly controlled the thickness of hydrogel patterns. Using the constructed setup, polyethyleneglycol diacrylate (PEGDA) was patterned on microfabricated cantilevers in a highly controlled manner. Currently, the smallest PEGDA patternable is a 5-μm-diameter circle with a thickness of ∼10 μm. To confirm thicknesses of patterned PEGDAs, resonance frequencies of microcantilevers were measured before and after each PEGDA patterning. Thicknesses extracted from resonance measurements showed good agreement with measurements using an optical microscope.

Keywords

Dynamic mask lithography Hydrogel Microcantilever Micropatterning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Bashir, J. Z. Hilt, O. Elibol, A. Gupta and N. A. Peppas, Micromechanical cantilever as an ultrasensitive pH microsensor, Appl. Phys. Lett., 81 (2002) 3091–3093.CrossRefGoogle Scholar
  2. [2]
    D. S. VanBlarcom and N. A. Peppas, Microcantilever sensing arrays from biodegradable, pH-responsive hydrogels, Biomed. Microdevices, 13 (2011) 829–836.CrossRefGoogle Scholar
  3. [3]
    H. Du, S. Kondu and H. F. Ji, Formation of ultrathin hydrogel films on microcantilever devices using electro-phoretic deposition, Micro Nano Lett., 3 (2008) 12–17.CrossRefGoogle Scholar
  4. [4]
    X. D. Yan, X. H. K. Xu and H. F. Ji, Glucose oxidase multilayer modified microcantilevers for glucose measurement, Anal. Chem., 77 (2005) 6197–6204.CrossRefGoogle Scholar
  5. [5]
    W. Liwei, L. Yang, Z. Min, T. Dongsheng, M. Xianhui and L. Yanbiao, A relative humidity sensor using a hydrogelcoated long period grating, Meas. Sci. Technol., 18 (2007) 3131–3134.CrossRefGoogle Scholar
  6. [6]
    Y. Zhang, H. F. Ji, G. M. Brown and T. Thundat, Detection of CrO42- Using a Hydrogel Swelling Microcantilever Sensor, Anal. Chem., 75 (2003) 4773–4777.CrossRefGoogle Scholar
  7. [7]
    K. Liu and H. F. Ji, Detection of Pb2+ using a hydrogel swelling microcantilever sensor, Anal. Sci., 20 (2004) 9–11.CrossRefGoogle Scholar
  8. [8]
    R. P. Peng, B. Chen, H. F. Ji, L. Z. Wu and C. H. Tung, Highly sensitive and selective detection of beryllium ions using a microcantilever modified with benzo-9-crown-3 doped hydrogel, Analyst, 137 (2012) 1220–1224.CrossRefGoogle Scholar
  9. [9]
    J. Gonska, C. Schelling and G. Urban, Application of hydrogel-coated microcantilevers as sensing elements for pH, J. Micromech. Microeng., 19 (2009) 127002.CrossRefGoogle Scholar
  10. [10]
    L. J. Millet, E. A. Corbin, R. Free, K. Park, H. Kong, W. P. King and R. Bashir, Characterization of mass and swelling of hydrogel microstructures using MEMS resonant mass sensor arrays, Small, 8 (2012) 2555–2562.CrossRefGoogle Scholar
  11. [11]
    A. Revzin, R. J. Russell, V. K. Yadavalli, W. G. Koh, C. Deister, D. D. Hile, M. B. Mellott and M. V. Pishko, Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography, Langmuir, 17 (2001) 5440–5447.CrossRefGoogle Scholar
  12. [12]
    J. Z. Hilt, A. K. Gupta, R. Bashir and N. A. Peppas, Ultrasensitive biomems sensors based on microcantilevers patterned with environmentally responsive hydrogels, Biomed. Microdevices, 5 (2003) 177–184.CrossRefGoogle Scholar
  13. [13]
    S. E. Chung, W. Park, H. Park, K. Yu, N. Park and S. Kwon, Optofluidic maskless lithography system for realtime synthesis of photopolymerized microstructures in microfluidic channels, Appl. Phys. Lett., 91 (2007) 041106.CrossRefGoogle Scholar
  14. [14]
    C. Sun, N. Fang, D. M. Wu and X. Zhang, Projection micro-stereolithography using digital micro-mirror dynamic mask, Sens. Actuators A Phys., 121 (2005) 113–120.CrossRefGoogle Scholar
  15. [15]
    I. Fanderlik, Optical properties of glass. Amsterdam: Elsevier Science Ltd (1983).Google Scholar
  16. [16]
    M. A. Green and M. J. Keevers, Optical properties of intrinsic silicon at 300 K, Progress in Photovoltaics: Research and Applications, 3 (1995) 189–192.CrossRefGoogle Scholar
  17. [17]
    A. D. Rakic, Algorithm for the determination of intrinsic optical-constants of metal-films — application to aluminum, Appl. Optics, 34 (1995) 4755–4767.CrossRefGoogle Scholar
  18. [18]
    I. Lee and J. Lee, Measurement uncertainties in resonant characteristics of MEMS resonators, J. Mech. Sci. Technol., 27 (2013) 491–500.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSogang UniversitySeoulKorea

Personalised recommendations