Journal of Mechanical Science and Technology

, Volume 27, Issue 5, pp 1205–1224 | Cite as

Mechanical reliability of alloy-based electrode materials for rechargeable Li-ion batteries

Review paper

Abstract

Lithium alloys with metallic or semi-metallic elements are attractive candidate materials for the next-generation high-capacity rechargeable Li-ion battery anodes, due to their large specific and volumetric capacities. The key challenge in the application of these materials has been the very large volume changes, and the associated stress buildup and failure during insertion and extraction of lithium. While such stress buildup bears resemblance to the process of thermo-stress development, a phenomenon relatively well-understood, the physics involved in these alloy-based electrodes is much more complex in nature, more challenging to address, and richer in the variety of influencing factors. The reasons not only lie in the fact that the mechanical deformations are much larger, but also arise from the fact that the processes entail interactions among mass diffusion, chemical reactions, non-linear plastic flow and material property evolutions. In this paper, we present a review of some of the fundamental issues and the latest research related to the mechanical reliability of such alloy-based anode materials, with a focus on Li/Si, a material with the highest known theoretical energy storage capacity. The review primarily concerns continuum-level analyses, with relevant experimental data and atomistic-level results as input.

Keywords

Li-ion battery Electrode materials Mechanical reliability Continuum models Diffusion Stress Plasticity Fracture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer and J. R. Dahn, Reaction of Li with alloy thin films studied by in situ AFM, Journal of the Electrochemical Society, 150 (2003) A1457–A1464.CrossRefGoogle Scholar
  2. [2]
    Y. Qi, H. B. Guo, L.G. Hector and A. Timmons, Threefold increase in the young’s modulus of graphite negative electrode during lithium intercalation, Journal of the Electrochemical Society, 157 (2010) A558–A566.CrossRefGoogle Scholar
  3. [3]
    D. Larcher, S. Beattie, M. Morcrette, K. Edstroem, J. C. Jumas and J. M. Tarascon, Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries, Journal of Materials Chemistry, 17 (2007) 3759–3772.CrossRefGoogle Scholar
  4. [4]
    H. Wu, G. Zheng, N. Liu, T. J. Carney, Y. Yang and Y. Cui, Engineering empty space between Si nanoparticles for lithiumion battery anodes, Nano Lett, 12 (2012) 904–909.CrossRefGoogle Scholar
  5. [5]
    H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. B. Hu and Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nature Nanotechnology, 7 (2012) 309–314.Google Scholar
  6. [6]
    Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix and Y. Cui, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano Lett, 11 (2011) 2949–2954.CrossRefGoogle Scholar
  7. [7]
    L. B. Hu, H. Wu, Y. F. Gao, A. Y. Cao, H. B. Li, J. McDough, X. Xie, M. Zhou and Y. Cui, Silicon-carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity, Advanced Energy Materials, 1 (2011) 523–527.CrossRefGoogle Scholar
  8. [8]
    C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat Nanotechnol, 3 (2008) 31–35.CrossRefGoogle Scholar
  9. [9]
    L. F. Cui, R. Ruffo, C. K. Chan, H. L. Peng and Y. Cui, Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes, Nano Letters, 9 (2009) 491–495.CrossRefGoogle Scholar
  10. [10]
    T. Song, J. Xia, J. H. Lee, D. H. Lee, M. S. Kwon, J. M. Choi, J. Wu, S. K. Doo, H. Chang, W. I. Park, D. S. Zang, H. Kim, Y. Huang, K. C. Hwang, J. A. Rogers and U. Paik, Arrays of sealed silicon nanotubes as anodes for lithium ion batteries, Nano Lett, 10 (2010) 1710–1716.CrossRefGoogle Scholar
  11. [11]
    A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala and G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nature Materials, 9 (2010) 353–358.CrossRefGoogle Scholar
  12. [12]
    L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause and J. R. Dahn, Colossal reversible volume changes in lithium alloys, Electrochemical and Solid State Letters, 4 (2001) A137–A140.CrossRefGoogle Scholar
  13. [13]
    J. W. Choi, J. McDonough, S. Jeong, J. S. Yoo, C. K. Chan and Y. Cui, Stepwise nanopore evolution in one-dimensional nanostructures, Nano Letters, 10 (2010) 1409–1413.CrossRefGoogle Scholar
  14. [14]
    V. A. Sethuraman, M. J. Chon, M. Shimshak, V. Srinivasan and P. R. Guduru, In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation, Journal of Power Sources, 195 (2010) 5062–5066.CrossRefGoogle Scholar
  15. [15]
    A. F. Bower, P. R. Guduru and V. A. Sethuraman, A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell, Journal of the Mechanics and Physics of Solids, 59 (2011) 804–828.MathSciNetCrossRefGoogle Scholar
  16. [16]
    K. J. Zhao, M. Pharr, J. J. Vlassak and Z. G. Suo, Fracture of electrodes in lithium-ion batteries caused by fast charging, Journal of Applied Physics, 108 (2010) 073517.CrossRefGoogle Scholar
  17. [17]
    Y. F. Gao, M. Cho and M. Zhou, Stress relaxation through interdiffusion in amorphous lithium alloy electrodes, Journal of the Mechanics and Physics of Solids, 61 (2013) 579–596.MATHCrossRefGoogle Scholar
  18. [18]
    H. Haftbaradaran, H. J. Gao and W. A. Curtin, A surface locking instability for atomic intercalation into a solid electrode, Applied Physics Letters, 96 (2010).Google Scholar
  19. [19]
    Y. T. Cheng and M. W. Verbrugge, The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles, Journal of Applied Physics, 104 (2008).Google Scholar
  20. [20]
    L. Anand, A Cahn-Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations, Journal of the Mechanics and Physics of Solids, 60 (2012) 1983–2002.MathSciNetCrossRefGoogle Scholar
  21. [21]
    I. Ryu, J. W. Choi, Y. Cui and W. D. Nix, Size-dependent fracture of Si nanowire battery anodes, Journal of the Mechanics and Physics of Solids, 59 (2011) 1717–1730.CrossRefGoogle Scholar
  22. [22]
    S. Huang and T. Zhu, Atomistic mechanisms of lithium insertion in amorphous silicon, Journal of Power Sources, 196 (2011) 3664–3668.CrossRefGoogle Scholar
  23. [23]
    V. Chevrier, J. Zwanziger and J. Dahn, First principles study of Li-Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations, Journal of Alloys and Compounds, 496 (2010) 25–36.CrossRefGoogle Scholar
  24. [24]
    V. L. Chevrier and J. R. Dahn, First principles model of amorphous silicon lithiation, Journal of the Electrochemical Society, 156 (2009) A454–A458.CrossRefGoogle Scholar
  25. [25]
    J. Christensen and J. Newman, Stress generation and fracture in lithium insertion materials, Journal of Solid State Electrochemistry, 10 (2006) 293–319.CrossRefGoogle Scholar
  26. [26]
    P. Limthongkul, Y. I. Jang, N. J. Dudney and Y. M. Chiang, Electrochemically-driven solid-state amorphization in lithiumsilicon alloys and implications for lithium storage, Acta Materialia, 51 (2003) 1103–1113.CrossRefGoogle Scholar
  27. [27]
    P. Limthongkul, Y. I. Jang, N. J. Dudney and Y. M. Chiang, Electrochemically-driven solid-state amorphization in lithiummetal anodes, Journal of Power Sources, 119 (2003) 604–609.CrossRefGoogle Scholar
  28. [28]
    M. Pharr, K. J. Zhao, X. W. Wang, Z. G. Suo and J. J. Vlassak, Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries, Nano Letters, 12 (2012) 5039–5047.CrossRefGoogle Scholar
  29. [29]
    X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu and J. Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, Acs Nano, 6 (2012) 1522–1531.CrossRefGoogle Scholar
  30. [30]
    X. H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L. Q. Zhang, Y. Liu, A. Kushima, W. T. Liang, J. W. Wang, J. H. Cho, E. Epstein, S. A. Dayeh, S. T. Picraux, T. Zhu, J. Li, J. P. Sullivan, J. Cumings, C. Wang, S. X. Mao, Z. Z. Ye, S. Zhang and J. Y. Huang, Anisotropic swelling and fracture of silicon nanowires during lithiation, Nano Lett, 11 (2011) 3312–3318.CrossRefGoogle Scholar
  31. [31]
    X. H. Liu and J. Y. Huang, In situ TEM electrochemistry of anode materials in lithium ion batteries, Energy & Environmental Science, 4 (2011) 3844–3860.CrossRefGoogle Scholar
  32. [32]
    X. H. Liu, J. W. Wang, S. Huang, F. F. Fan, X. Huang, Y. Liu, S. Krylyuk, J. Yoo, S. A. Dayeh, A. V. Davydov, S. X. Mao, S. T. Picraux, S. L. Zhang, J. Li, T. Zhu and J. Y. Huang, In situ atomic-scale imaging of electrochemical lithiation in silicon, Nature Nanotechnology, 7 (2012) 749–756.CrossRefGoogle Scholar
  33. [33]
    S. W. Lee, M. T. McDowell, J. W. Choi and Y. Cui, Anomalous shape changes of silicon nanopillars by electrochemical lithiation, Nano Lett, 11 (2011) 3034–3039.CrossRefGoogle Scholar
  34. [34]
    H. Yang, S. Huang, X. Huang, F. F. Fan, W. T. Liang, X. H. Liu, L. Q. Chen, J. Y. Huang, J. Li, T. Zhu and S. L. Zhang, Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires, Nano Letters, 12 (2012) 1953–1958.CrossRefGoogle Scholar
  35. [35]
    X. H. Liu, F. F. Fan, H. Yang, S. L. Zhang, J. Y. Huang and T. Zhu, Self-limiting lithiation in silicon nanowires, (2013) DOI: 10.1021/nn305282d.Google Scholar
  36. [36]
    S. W. Lee, M. T. McDowell, L. A. Berla, W. D. Nix and Y. Cui, Fracture of crystalline silicon nanopillars during electrochemical lithium insertion, Proceedings of the National Academy of Sciences of the United States of America, 109 (2012) 4080–4085.Google Scholar
  37. [37]
    Z. W. Cui, F. Gao and J. M. Qu, A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries, Journal of the Mechanics and Physics of Solids, 60 (2012) 1280–1295.MathSciNetCrossRefGoogle Scholar
  38. [38]
    K. J. Zhao, M. Pharr, S. Q. Cai, J. J. Vlassak and Z. G. Suo, Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge, Journal of the American Ceramic Society, 94 (2011) S226–S235.CrossRefGoogle Scholar
  39. [39]
    S. Prussin, The generation and distribution of dislocations by solute diffusion, Journal of Applied Physics, 32 (1961) 1876.CrossRefGoogle Scholar
  40. [40]
    J. C. M. Li, Physical-chemistry of some microstructural phenomena, Metallurgical Transactions a-Physical Metallurgy and Materials Science, 9 (1978) 1353–1380.CrossRefGoogle Scholar
  41. [41]
    S. B. Lee, W. L. Wang and J. R. Chen, Diffusion-induced stresses in a hollow cylinder: Constant surface stresses, Materials Chemistry and Physics, 64 (2000) 123–130.CrossRefGoogle Scholar
  42. [42]
    W. L. Wang, S. Lee and J. R. Chen, Effect of chemical stress on diffusion in a hollow cylinder, Journal of Applied Physics, 91 (2002) 9584–9590.CrossRefGoogle Scholar
  43. [43]
    S. C. Ko, S. Lee and Y. T. Chou, Chemical stresses in a square sandwich composite, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 409 (2005) 145–152.CrossRefGoogle Scholar
  44. [44]
    F. Q. Yang, Interaction between diffusion and chemical stresses, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 409 (2005) 153–159.CrossRefGoogle Scholar
  45. [45]
    Y. T. Cheng and M. W. Verbrugge, Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation, Journal of Power Sources, 190 (2009) 453–460.CrossRefGoogle Scholar
  46. [46]
    Y. T. Cheng and M. W. Verbrugge, Application of hasselman’s crack propagation model to insertion electrodes, Electrochemical and Solid State Letters, 13 (2010) A128–A131.CrossRefGoogle Scholar
  47. [47]
    R. Deshpande, Y. T. Cheng and M. W. Verbrugge, Modeling diffusion-induced stress in nanowire electrode structures, Journal of Power Sources, 195 (2010) 5081–5088.CrossRefGoogle Scholar
  48. [48]
    Y. T. Cheng and M. W. Verbrugge, Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles, Journal of the Electrochemical Society, 157 (2010) A508–A516.CrossRefGoogle Scholar
  49. [49]
    J. Christensen and J. Newman, A mathematical model of stress generation and fracture in lithium manganese oxide, Journal of the Electrochemical Society, 153 (2006) A1019–A1030.CrossRefGoogle Scholar
  50. [50]
    X. Zhang, W. Shyy and A. M. Sastry, Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles, Journal of the Electrochemical Society, 154 (2007) A910.CrossRefGoogle Scholar
  51. [51]
    N. A. Liu, L. B. Hu, M. T. McDowell, A. Jackson and Y. Cui, Prelithiated silicon nanowires as an anode for lithium ion batteries, Acs Nano, 5 (2011) 6487–6493.CrossRefGoogle Scholar
  52. [52]
    L. Y. Beaulieu, S. D. Beattie, T. D. Hatchard and J. R. Dahn, The electrochemical reaction of lithium with tin studied by in situ AFM, Journal of the Electrochemical Society, 150 (2003) A419–A424.CrossRefGoogle Scholar
  53. [53]
    X. Xiao, P. Liu, M. W. Verbrugge, H. Haftbaradaran and H. Gao, Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries, Journal of Power Sources, 196 (2011) 1409–1416.CrossRefGoogle Scholar
  54. [54]
    J. C. Li, A. K. Dozier, Y. C. Li, F. Q. Yang and Y. T. Cheng, Crack pattern formation in thin film lithium-ion battery electrodes, Journal of the Electrochemical Society, 158 (2011) A689–A694.CrossRefGoogle Scholar
  55. [55]
    B. Laforge, L. Levan-Jodin, R. Salot and A. Billard, Study of germanium as electrode in thin-film battery, Journal of the Electrochemical Society, 155 (2008) A181–A188.CrossRefGoogle Scholar
  56. [56]
    M. Winter and J. O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochimica Acta, 45 (1999) 31–50.CrossRefGoogle Scholar
  57. [57]
    K. Leung and Z. Neda, Pattern formation and selection in quasistatic fracture, Physical Review Letters, 85 (2000) 662–665.CrossRefGoogle Scholar
  58. [58]
    D. Gross, T. Seelig and SpringerLink (Online service), in: Mechanical engineering series, Springer, Berlin; New York (2006) xii, 319.Google Scholar
  59. [59]
    S. K. Soni, B. W. Sheldon, X. C. Xiao, M. W. Verbrugge, D. Ahn, H. Haftbaradaran and H. J. Gao, Stress mitigation during the lithiation of patterned amorphous Si islands, Journal of the Electrochemical Society, 159 (2012) A38–A43.CrossRefGoogle Scholar
  60. [60]
    H. Haftbaradaran, S. K. Soni, B. W. Sheldon, X. C. Xiao and H. J. Gao, Modified stoney equation for patterned thin film electrodes on substrates in the presence of interfacial sliding, Journal of Applied Mechanics-Transactions of the Asme, 79 (2012).Google Scholar
  61. [61]
    H. Haftbaradaran, X. C. Xiao, M. W. Verbrugge and H. J. Gao, Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands, Journal of Power Sources, 206 (2012) 357–366.CrossRefGoogle Scholar
  62. [62]
    R. F. Cook,Strength and sharp contact fracture of silicon, Journal of Materials Science, 41 (2006) 841–872.CrossRefGoogle Scholar
  63. [63]
    V. A. Sethuraman, M. J. Chon, M. Shimshak, N. Van Winkle and P. R. Guduru, In situ measurement of biaxial modulus of Si anode for Li-ion batteries, Electrochemistry Communications, 12 (2010) 1614–1617.CrossRefGoogle Scholar
  64. [64]
    G. G. Stoney, The tension of metallic films deposited by electrolysis, Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 82 (1909) 172–175.CrossRefGoogle Scholar
  65. [65]
    K. J. Zhao, W. L. Wang, J. Gregoire, M. Pharr, Z. G. Suo, J. J. Vlassak and E. Kaxiras, Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: A first-principles theoretical study, Nano Letters, 11 (2011) 2962–2967.CrossRefGoogle Scholar
  66. [66]
    B. Hertzberg, J. Benson and G. Yushin, Ex-situ depthsensing indentation measurements of electrochemically produced Si-Li alloy films, Electrochemistry Communications, 13 (2011) 818–821.CrossRefGoogle Scholar
  67. [67]
    V. B. Shenoy, P. Johari and Y. Qi, Elastic softening of amorphous and crystalline Li-Si Phases with increasing Li concentration: A first-principles study, Journal of Power Sources, 195 (2010) 6825–6830.CrossRefGoogle Scholar
  68. [68]
    Y. F. Gao and M. Zhou, Strong stress-enhanced diffusion in amorphous lithium alloy nanowire electrodes, Journal of Applied Physics, 109 (2011) 014310.CrossRefGoogle Scholar
  69. [69]
    Y. F. Gao and M. Zhou, Coupled mechano-diffusional driving forces for fracture in electrode materials, Journal of Power Sources, 230 (2013) 176–193.CrossRefGoogle Scholar
  70. [70]
    L. Brassart and Z. G. Suo, Reactive flow in solids, Journal of the Mechanics and Physics of Solids, 61 (2013) 61–77.MathSciNetCrossRefGoogle Scholar
  71. [71]
    L. Brassart and Z. G. Suo, Reactive flow in large-deformation electrodes of lithium-ion batteries, International Journal of Applied Mechanics, 4 (2012).Google Scholar
  72. [72]
    K. J. Zhao, M. Pharr, J. J. Vlassak and Z. G. Suo, Inelastic hosts as electrodes for high-capacity lithium-ion batteries, Journal of Applied Physics, 109 (2011).Google Scholar
  73. [73]
    C. H. Wu, The role of Eshelby stress in composition-generated and stress-assisted diffusion, Journal of the Mechanics and Physics of Solids, 49 (2001) 1771–1794.MATHCrossRefGoogle Scholar
  74. [74]
    E. H. Lee, Elastic-plastic deformation at finite strains, Journal of Applied Mechanics, 36 (1969) 1.MATHCrossRefGoogle Scholar
  75. [75]
    Y. F. Gao and M. Zhou, Strong dependency of lithium diffusion on mechanical constraints in high-capacity Li-ion battery electrodes, Acta Mechanica Sinica, 28 (2012) 1068–1077.MathSciNetCrossRefGoogle Scholar
  76. [76]
    R. Grantab and V. B. Shenoy, Pressure-gradient dependent diffusion and crack propagation in lithiated silicon nanowires, Journal of the Electrochemical Society, 159 (2012) A584–A591.CrossRefGoogle Scholar
  77. [77]
    M. W. Verbrugge and Y. T. Cheng, Stress and strain-energy distributions within diffusion-controlled insertion-electrode particles subjected to periodic potential excitations, Journal of the Electrochemical Society, 156 (2009) A927–A937.CrossRefGoogle Scholar
  78. [78]
    R. Deshpande, Y. T. Cheng, M. W. Verbrugge and A. Timmons, Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle, Journal of the Electrochemical Society, 158 (2011) A718–A724.CrossRefGoogle Scholar
  79. [79]
    R. Deshpande, Y. Qi and Y. T. Cheng, Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications, Journal of the Electrochemical Society, 157 (2010) A967–A971.CrossRefGoogle Scholar
  80. [80]
    T. K. Bhandakkar and H. T. Johnson, Diffusion induced stresses in buckling battery electrodes, Journal of the Mechanics and Physics of Solids, 60 (2012) 1103–1121.MathSciNetCrossRefGoogle Scholar
  81. [81]
    B. W. Sheldon, S. K. Soni, X. C. Xiao and Y. Qi, Stress contributions to solution thermodynamics in Li-Si alloys, Electrochemical and Solid State Letters, 15 (2012) A9–A11.CrossRefGoogle Scholar
  82. [82]
    R. Chandrasekaran, A. Magasinski, G. Yushin and T. F. Fuller, Analysis of lithium insertion/deinsertion in a silicon electrode particle at room temperature, Journal of the Electrochemical Society, 157 (2010) A1139–A1151.CrossRefGoogle Scholar
  83. [83]
    S. Golmon, K. Maute, S. H. Lee and M. L. Dunn, Stress generation in silicon particles during lithium insertion, Applied Physics Letters, 97 (2010).Google Scholar
  84. [84]
    J. C. Li, X. C. Xiao, F. Q. Yang, M. W. Verbrugge and Y. T. Cheng, Potentiostatic intermittent titration technique for electrodes governed by diffusion and interfacial reaction, Journal of Physical Chemistry C, 116 (2012) 1472–1478.CrossRefGoogle Scholar
  85. [85]
    M. Tang, W. C. Carter, J. F. Belak and Y. M. Chiang, Modeling the competing phase transition pathways in nanoscale olivine electrodes, Electrochimica Acta, 56 (2010) 969–976.CrossRefGoogle Scholar
  86. [86]
    M. Tang, W. C. Carter and Y. M. Chiang, Electrochemically driven phase transitions in insertion electrodes or lithiumion batteries: Examples in lithium metal phosphate olivines, Annual Review of Materials Research, Vol 40,40 (2010) 501–529.CrossRefGoogle Scholar
  87. [87]
    M. Tang, H. Y. Huang, N. Meethong, Y. H. Kao, W. C. Carter and Y. M. Chiang, Model for the particle size, overpotential, and strain dependence of phase transition pathways in storage electrodes: Application to nanoscale olivines, Chemistry of Materials, 21 (2009) 1557–1571.CrossRefGoogle Scholar
  88. [88]
    R. Purkayastha and R. M. McMeeking, A linearized model for lithium ion batteries and maps for their performance and failure, Journal of Applied Mechanics-Transactions of the Asme, 79 (2012) 031021.CrossRefGoogle Scholar
  89. [89]
    F. C. Larche and J. W. Cahn, The interactions of composition and stress in crystalline solids, Acta Metallurgica, 33 (1985) 331–357.CrossRefGoogle Scholar
  90. [90]
    B. Yang, Y. P. He, J. Irsa, C. A. Lundgren, J. B. Ratchford and Y. P. Zhao, Effects of composition-dependent modulus, finite concentration and boundary constraint on Li-ion diffusion and stresses in a bilayer Cu-coated Si nano-anode, Journal of Power Sources, 204 (2012) 168–176.CrossRefGoogle Scholar
  91. [91]
    A. F. Bower and P. R. Guduru, A simple finite element model of diffusion, finite deformation, plasticity and fracture in lithium ion insertion electrode materials, Modelling and Simulation in Materials Science and Engineering, 20 (2012) 045004.CrossRefGoogle Scholar
  92. [92]
    G. G. Botte and R. E. White, Modeling lithium intercalation in a porous carbon electrode, Journal of the Electrochemical Society, 148 (2001) A54–A66.CrossRefGoogle Scholar
  93. [93]
    H. Haftbaradaran, J. Song, W. A. Curtin and H. J. Gao, Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration, Journal of Power Sources, 196 (2011) 361–370.CrossRefGoogle Scholar
  94. [94]
    R. K. Abu Al-Rub and G. Z. Voyiadjis, A direct finite element implementation of the gradient-dependent theory, In ternational Journal for Numerical Methods in Engineering, 63 (2005) 603–629.MATHCrossRefGoogle Scholar
  95. [95]
    O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The finite element method its basis and fundamentals, 6th ed., Elsevier Butterworth-Heinemann, Amsterdam; London (2005).Google Scholar
  96. [96]
    R. B. Hetnarski and M. R. Eslami, Thermal stresses — Advanced theory and applications, Springer, Dordrecht; London (2008).Google Scholar
  97. [97]
    D. P. H. Hasselman, Elastic energy at fracture and surface energy as design criteria for thermal shock, Journal of the American Ceramic Society, 46 (1963) 535–540.CrossRefGoogle Scholar
  98. [98]
    G. Barenblatt, The formation of equilibrium cracks during brittle fracture, Journal of Applied Mathematics and Mechanics, 23 (1959) 622–636.MathSciNetMATHCrossRefGoogle Scholar
  99. [99]
    D. S. Dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, 8 (1960) 100–104.CrossRefGoogle Scholar
  100. [100]
    A. Needleman, A continuum model for void nucleation by inclusion debonding, Journal of Applied Mechanics-Transactions of the Asme, 54 (1987) 525–531.MATHCrossRefGoogle Scholar
  101. [101]
    G. T. Camacho and M. Ortiz, Computational modelling of impact damage in brittle materials, International Journal of Solids and Structures, 33 (1996) 2899–2938.MATHCrossRefGoogle Scholar
  102. [102]
    J. Zhai, V. Tomar and M. Zhou, Micromechanical simulation of dynamic fracture using the cohesive finite element method, Journal of Engineering Materials and Technology-Transactions of the Asme, 126 (2004) 179–191.CrossRefGoogle Scholar
  103. [103]
    Y. Li and M. Zhou, Prediction of fracture toughness of ceramic composites as function of microstructure: I. numerical simulations, Journal of the Mechanics and Physics of Solids, 61 (2013) 472–488.CrossRefGoogle Scholar
  104. [104]
    A. Barua and M. Zhou, A lagrangian framework for analyzing microstructural level response of polymer-bonded explosives, Modelling and Simulation in Materials Science and Engineering, 19 (2011).Google Scholar
  105. [105]
    T. K. Bhandakkar and H. J. Gao, Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: Implications on the critical size for flaw tolerant battery electrodes, International Journal of Solids and Structures, 47 (2010) 1424–1434.MATHCrossRefGoogle Scholar
  106. [106]
    F. Zhang, A. F. Bower and W. A. Curtin, Finite element implementation of a kinetic model of dynamic strain aging in aluminum-magnesium alloys, International Journal for Numerical Methods in Engineering, 86 (2011) 70–92.MathSciNetMATHCrossRefGoogle Scholar
  107. [107]
    P. O. Bouchard, F. Bay, Y. Chastel and I. Tovena, Crack propagation modelling using an advanced remeshing technique, Computer Methods in Applied Mechanics and Engineering, 189 (2000) 723–742.MATHCrossRefGoogle Scholar
  108. [108]
    Y. H. Hu, X. H. Zhao and Z. G. Suo, Averting cracks caused by insertion reaction in lithium-ion batteries, Journal of Materials Research, 25 (2010) 1007–1010.CrossRefGoogle Scholar
  109. [109]
    P. Sofronis and J. Lufrano, Interaction of local elastoplasticity with hydrogen: embrittlement effects, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 260 (1999) 41–47.CrossRefGoogle Scholar
  110. [110]
    X. H. Chen, Coupled hygro-thermo-viscoelastic fracture theory, International Journal of Fracture, 148 (2007) 47–55.CrossRefGoogle Scholar
  111. [111]
    M. Zhou, G. Ravichandran and A. J. Rosakis, Dynamically propagating shear bands in impact-loaded prenotched plates. 2. Numerical simulations, Journal of the Mechanics and Physics of Solids, 44 (1996) 1007.CrossRefGoogle Scholar
  112. [112]
    T. Nakamura, C. F. Shih and L. B. Freund, Computational methods based on an energy integral in dynamic fracture, International Journal of Fracture, 27 (1985) 229–243.CrossRefGoogle Scholar
  113. [113]
    R. Deshpande, M. Verbrugge, Y. T. Cheng, J. Wang and P. Liu, Battery cycle life prediction with coupled chemical degradation and fatigue mechanics, Journal of the Electrochemical Society, 159 (2012) A1730–A1738.CrossRefGoogle Scholar
  114. [114]
    J. Christensen, Modeling diffusion-induced stress in Liion cells with porous electrodes, Journal of the Electrochemical Society, 157 (2010) A366–A380.CrossRefGoogle Scholar
  115. [115]
    R. T. Purkayastha and R. M. McMeeking, An integrated 2-D model of a lithium ion battery: the effect of material parameters and morphology on storage particle stress, Computational Mechanics, 50 (2012) 209–227.MathSciNetMATHCrossRefGoogle Scholar
  116. [116]
    T. Hutzenlaub, S. Thiele, R. Zengerle and C. Ziegler, Three-dimensional reconstruction of a LiCoO2 Li-ion battery cathode, Electrochemical and Solid State Letters, 15 (2012) A33–A36.CrossRefGoogle Scholar
  117. [117]
    R. E. Garcia, Y. M. Chiang, W. C. Carter, P. Limthongkul and C. M. Bishop, Microstructural modeling and design of rechargeable lithium-ion batteries, Journal of the Electrochemical Society, 152 (2005) A255–A263.CrossRefGoogle Scholar
  118. [118]
    R. E. Garcia and Y. M. Chiang, Spatially resolved modeling of microstructurally complex battery architectures, Journal of the Electrochemical Society, 154 (2007) A856–A864.CrossRefGoogle Scholar
  119. [119]
    M. Doyle, T. F. Fuller and J. Newman, Modeling of galvanostatic charge and discharge of the lithium polymer insertion cell, Journal of the Electrochemical Society, 140 (1993) 1526–1533.CrossRefGoogle Scholar
  120. [120]
    T. F. Fuller, M. Doyle and J. Newman, Simulation and optimization of the dual lithium ion insertion cell, Journal of the Electrochemical Society, 141 (1994) 1–10.CrossRefGoogle Scholar
  121. [121]
    M. B. Pinson and M. Z. Bazant, Theory of SEI formation in rechargeable batteries: Capacity fade, accelerated aging and lifetime prediction, Journal of the Electrochemical Society, 160 (2012) A243–A250.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.The George W. Woodruff School of Mechanical Engineering, School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.WCU Program on Multiscale Mechanical Design School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations