Journal of Mechanical Science and Technology

, Volume 27, Issue 2, pp 491–500 | Cite as

Measurement uncertainties in resonant characteristics of MEMS resonators

Article

Abstract

This paper reports measurement of random uncertainties in resonant characteristics (resonance frequency and quality factor) of microelectromechanical system (MEMS) resonators. We employ different methods to extract resonant characteristics of 4 different MEMS resonators which are either clamped-free or clamped-clamped beams. Each beam type operates either in air or in a partial vacuum, and therefore, different vacuum levels can be examined. Three different methods, including frequency sweep, impulse response, and thermal noise, are applied to each resonator type excited with electrostatic or piezo-crystal actuation. We make a thorough analysis and comparison for three different methods. Depending on device type and operating condition, there exists a better and recommended way to extract resonant characteristics of MEMS resonators. For example, the impulse response is best-suited for the quality factor measurement of a clamped-clamped beam operating in a vacuum. Our results show that the quality factor of MEMS resonators may be noticeably different and exhibit appreciable systematic and random uncertainties, and suggests a better way to extract the quality factor for a given situation.

Keywords

MEMS Q-factor Resonance frequency Resonator Uncertainty 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. N. Cleland and M. L. Roukes, A nanometre-scale mechanical electrometer, Nature, 392 (1998) 160–162.CrossRefGoogle Scholar
  2. [2]
    W. Pang, H. Y. Yu, H. Zhang and E. S. Kim, Temperaturecompensated film bulk acoustic resonator above 2 GHz, IEEE Electron Device Lett., 26 (2005) 369–371.CrossRefGoogle Scholar
  3. [3]
    I. D. Avramov, Gigahertz range resonant devices for oscillator applications using shear horizontal acoustic-waves, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 40 (1993) 459–468.CrossRefGoogle Scholar
  4. [4]
    S. Hur, S. Q. Lee and H. S. Choi, Fabrication and characterization of PMN-PT single crystal cantilever array for cochlear-like acoustic sensor, J. Mech. Sci. Technol., 24 (2010) 181–184.CrossRefGoogle Scholar
  5. [5]
    K. J. Coakley, J. D. Splett, M. D. Janezic and R. F. Kaiser, Estimation of Q-factors and resonant frequencies, IEEE Trans. Microw. Theory Tech., 51 (2003) 862–868.CrossRefGoogle Scholar
  6. [6]
    W. H. Han, S. M. Lindsay and T. W. Jing, A magnetically driven oscillating probe microscope for operation in liquids, Appl. Phys. Lett., 69 (1996) 4111–4113.CrossRefGoogle Scholar
  7. [7]
    X. P. Feng, Theory of a short optical cavity with dielectric multilayer film mirrors, Opt. Commun., 83 (1991) 162–176.CrossRefGoogle Scholar
  8. [8]
    S. Ohteru and N. Takachio, Optical signal quality monitor using direct Q-factor measurement, IEEE Photonics Technol. Lett., 11 (1999) 1307–1309.CrossRefGoogle Scholar
  9. [9]
    S. Wozniak, Resonant optical rectification in chiral molecular systems: Application to a three-level model, Acta Phys. Pol. A, 90 (1996) 519–522.Google Scholar
  10. [10]
    J. W. Lee, Analysis of fluid-structure interaction for predicting resonant frequencies and quality factors of a microcantilever on a squeeze-film, J. Mech. Sci. Technol., 25 (2011) 3005–3013.CrossRefGoogle Scholar
  11. [11]
    S. Prescesky, M. Parameswaran, A. Rawicz, R. F. B. Turner and U. Reichl, Silicon micromachining technology for subnanogram discrete mass resonant biosensors, Can. J. Phys., 70 (1992) 1178–1183.CrossRefGoogle Scholar
  12. [12]
    T. Ono and M. Esashi, Mass sensing with resonating ultrathin silicon beams detected by a double-beam laser Doppler vibrometer, Meas. Sci. Technol., 15 (2004) 1977–1981.CrossRefGoogle Scholar
  13. [13]
    W. Y. Shih, X. P. Li, H. M. Gu, W. H. Shih and I. A. Aksay, Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers, J. Appl. Phys., 89 (2001) 1497–1505.CrossRefGoogle Scholar
  14. [14]
    R. Patois, P. Vairac and B. Cretin, Near-field acoustic densimeter and viscosimeter, Rev. Sci. Instrum., 71 (2000) 3860–3863.CrossRefGoogle Scholar
  15. [15]
    F. R. Blom, S. Bouwstra, M. Elwenspoek and J. H. J. Fluitman, Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry, J. Vac. Sci. Technol. B, 10 (1992) 19–26.CrossRefGoogle Scholar
  16. [16]
    F. H. Lei, J. F. Angiboust, W. Qiao, G. D. Sockalingum, S. Dukic, L. Chrit, M. Troyon and M. Manfait, Shear force near-field optical microscope based on Q-controlled bimorph sensor for biological imaging in liquid, J. Microsc.. 216 (2004) 229–233.MathSciNetCrossRefGoogle Scholar
  17. [17]
    S. Rast, C. Wattinger, U. Gysin and E. Meyer, The noise of cantilevers, Nanotechnology, 11 (2000) 169–172.CrossRefGoogle Scholar
  18. [18]
    J. E. Sader, J. Sanelli, B. D. Hughes, J. P. Monty and E. J. Bieske, Distortion in the thermal noise spectrum and quality factor of nanomechanical devices due to finite frequency resolution with applications to the atomic force microscope, Rev. Sci. Instrum., 82 (2011) 095104.CrossRefGoogle Scholar
  19. [19]
    S. Miller, K. Turner and N. MacDonald, Microelectromechanical scanning probe instruments for array architectures, Rev. Sci. Instrum., 68 (1997) 4155–4162.CrossRefGoogle Scholar
  20. [20]
    J. Brugger, N. Blanc, P. Renaud and N. De Rooij, Microlever with combined integrated sensor/actuator functions for scanning force microscopy, Sens. Actuator APhys., 43 (1994) 339–345.CrossRefGoogle Scholar
  21. [21]
    M. Cunningham, D. Jenkins, W. Clegg and M. Bakush, Active vibration control and actuation of a small cantilever for applications in scanning probe instruments, Sens. Actuator A-Phys., 50 (1995) 147–150.CrossRefGoogle Scholar
  22. [22]
    J. Lee and W. King, Microcantilever actuation via periodic internal heating, Rev. Sci. Instrum., 78 (2007) 126102.CrossRefGoogle Scholar
  23. [23]
    D. Rugar and P. Grutter, Mechanical parametric amplification and thermomechanical noise squeezing, Phys. Rev. Lett., 67 (1991) 699–702.CrossRefGoogle Scholar
  24. [24]
    J. Davis, D. Vick, D. Fortin, J. Burgess, W. Hiebert and M. Freeman, Nanotorsional resonator torque magnetometry, Appl. Phys. Lett., 96 (2010) 072513.CrossRefGoogle Scholar
  25. [25]
    K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe and D. Rugar, Quality factors in micron- and submicron-thick cantilevers, J. Microelectromech. Syst., 9 (2000) 117–125.CrossRefGoogle Scholar
  26. [26]
    J. Q. Han, C. C. Zhu, J. H. Liu and P. Li, A novel temperature-compensating structure for micromechanical bridge resonator, J. Micromech. Microeng., 15 (2005) 702–705.CrossRefGoogle Scholar
  27. [27]
    X. Xu and A. Raman, Comparative dynamics of magnetically, acoustically, and Brownian motion driven microcantilevers in liquids, J. Appl. Phys., 102 (2007) 034303.CrossRefGoogle Scholar
  28. [28]
    J. H. Seo, Silicon-based resonant microsensor platform for chemical and biological applications, PhD Dissertation, School of Electrical and Computer Engineering, Georgia Institute of Technology (2007).Google Scholar
  29. [29]
    K. Naeli and O. Brand, An iterative curve fitting method for accurate calculation of quality factors in resonators, Rev. Sci. Instrum., 80 (2009) 045105.CrossRefGoogle Scholar
  30. [30]
    A. R. Klempner, R. T. Marinis, P. Hefti and R. J. Pryputniewicz, Experimental determination of the Q-factors of microcantilevers coated with thin metal films, Strain, 45 (2009) 295–300.CrossRefGoogle Scholar
  31. [31]
    S. S. Verbridge, H. G. Craighead and J. M. Parpia, A megahertz nanomechanical resonator with room temperature quality factor over a million, Appl. Phys. Lett., 92 (2008) 013112.CrossRefGoogle Scholar
  32. [32]
    G. A. Matei, E. J. Thoreson, J. R. Pratt, D. B. Newell and N. A. Burnham, Precision and accuracy of thermal calibration of atomic force microscopy cantilevers, Rev. Sci. Instrum., 77 (2006) 083703.CrossRefGoogle Scholar
  33. [33]
    F. J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform, Proceedings of the IEEE, 66 (1978) 51–83.CrossRefGoogle Scholar
  34. [34]
    J. Lee, F. Goericke and W. King, Temperature-dependent thermomechanical noise spectra of doped silicon microcantilevers, Sens. Actuator A-Phys., 145 (2008) 37–43.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSogang UniversitySeoulKorea

Personalised recommendations