Journal of Mechanical Science and Technology

, Volume 26, Issue 5, pp 1501–1513 | Cite as

Numerical investigation of effects of buoyancy around a heated circular cylinder in parallel and contra flow

  • Armando A. Soares
  • Nuno D. Couto
  • M. Duarte Naia
  • Norberto J. Gonçalves
  • Abel Rouboa


Two-dimensional, steady, incompressible Navier-Stokes and energy equations are expressed in the stream function/vorticity formulation and solved numerically by finite difference method to study effects of buoyancy on fluid flow and heat transfer from a horizontal circular cylinder. The cylinder is exposed to approaching flow stream, for parallel (parallel flow) and opposing (contra flow) directions to the buoyant force. Two different thermal boundary conditions were considered at the cylinder surface: constant temperature (CT) and constant heat flux (CHF). The results elucidating the dependence of the flow and heat transfer characteristics on the Richardson number 0≤ Ri ≤ 2, Prandtl number 0 ≤ Pr ≤ 100 and Reynolds number 0 ≤ Re ≤ 40 are presented. Overall, for parallel flow regime, an increase in the Ri led to a raise in both Nusselt number and drag coefficient. However, for contra flow regime, these trends were reversed. For both regimes, the aforementioned behaviors were more pronounced for CT boundary condition than that for the CHF boundary condition.


Finite difference Buoyant effects Nusselt number Richardson number Cylinder 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. C. Collis and M. J. Williams, Two-dimensional convection from heated wires at low Reynolds number, J Fluid Mech, 9 (1959) 357–384.CrossRefGoogle Scholar
  2. [2]
    A. P. Hatton, D. D. James and H. V. Swire, Combined forced and natural convection with low-speed air flow over horizontal cylinders, J. Fluid Mech, 42 (1970) 17–31.CrossRefGoogle Scholar
  3. [3]
    R. M. Fand and K. K. Keswani, Combined natural and forced convection heat transfer from horizontal cylinders to water, Int. J. Heat Mass Tran, 16 (1973) 1175–1191.CrossRefGoogle Scholar
  4. [4]
    H. M. Badr, A theoretical study of laminar mixed convection from a horizontal cylinder in a cross stream, Int. J. Heat Mass Tran, 26 (1983) 639–653.MATHCrossRefGoogle Scholar
  5. [5]
    H. M. Badr, Laminar combined convection from a horizontal cylinder parallel and contra flow regimes, Int. J. Heat Mass Tran, 27 (1984) 15–27.MATHCrossRefGoogle Scholar
  6. [6]
    H. M. Badr, On the effect of flow direction on mixed convection from a horizontal cylinder, Int. J. Numer. Meth. Fl, 5 (1985) 1–12.MATHCrossRefGoogle Scholar
  7. [7]
    K. -S. Chang and J. -Y. Sa, The effect of buoyancy on vortex shedding in the near wake of a circular cylinder, J. Fluid Mech, 220 (1990) 253–266.CrossRefGoogle Scholar
  8. [8]
    K. Noto, H. Ishida and R. Matsumoto, A breakdown of the Karman vortex street due to the natural convection, Proc. of Flow Visualization III, Hemisphere, Washington DC, USA (1985) 348–352.Google Scholar
  9. [9]
    K. Hatanaka and M. Kawahara, A numerical study of vortex shedding around a heated/cooled of a cylinder by the threestep Taylor-Gaylerkin method, Int. J. Numer. Meth. Fl, 21 (1995) 857–867.MATHCrossRefGoogle Scholar
  10. [10]
    R. A. Ahmad and Z. H. Qureshi, Laminar mixed convection from a uniform heat flux horizontal cylinder in a crossflow, J. Thermophys. Heat Tr, 6 (1992) 277–287.CrossRefGoogle Scholar
  11. [11]
    B. S. V. Patnaik, P. S. A. Narayana and K. N. Seetharamu, Numerical simulation of vortex shedding past a circular cylinder under the influence of buoyancy, Int. J. Numer. Meth. Fl, 42 (1999) 3495–3507.MATHGoogle Scholar
  12. [12]
    R. N. Kieft, C. C. M. Rindt and A. A. V. Steenhoven, The wake behaviour behind a heated horizontal cylinder, Exp. Therm. Fluid Sci, 19 (1999) 183–193.CrossRefGoogle Scholar
  13. [13]
    H. Hu and M. Kochesfahani, The wake behind a heated cylinder in forced and mixed convection regimes, ASME Summer Heat Transfer Conference, ASME, San Francisco, CA (2005).Google Scholar
  14. [14]
    B. V. Khyati, H. Hui and Z. J. Wang, Numerical investigation of effect of buoyancy on the wake instability of a heated cylinder in contra flow, 45th AIAA Aerospace Sciences Meeting and Exhibit, 0801 (2007) 1–19.Google Scholar
  15. [15]
    A. A. Soares, J. Anacleto, L. Caramelo, J. M. Ferreira, and R. P. Chhabra, Mixed convection from a circular cylinder to power law fluids, Ind. Eng. Chem. Res, 48(17) (2009) 8219–8231.CrossRefGoogle Scholar
  16. [16]
    A. T. Srinivas, R. P. Bharti and R. P. Chhabra, Mixed convection heat transfer from a cylinder in power-law fluids: effect of aiding buoyancy, Ind. Eng. Chem. Res, 48(21) (2009) 9735–9754.CrossRefGoogle Scholar
  17. [17]
    R. Nazar, N. Amin and I. Pop, Mixed convection boundarylayer flow from a horizontal circular cylinder with a constant surface heat flux, Heat Mass Transfer, 40 (2004) 219–227.CrossRefGoogle Scholar
  18. [18]
    M. M. Zdravkovich, Flow around circular cylinders: Fundamentals Vol. I, University Press, Oxford (1997).Google Scholar
  19. [19]
    M. M. Zdravkovich, M. M., Flow around circular cylinders: Applications Vol. II, University Press, Oxford (2003).Google Scholar
  20. [20]
    R. P. Chhabra, A. A. Soares, J. M. Ferreira and L. Caramelo, Effects of viscous dissipation on heat transfer between an array of long circular cylinders and power Law fluids, Can. J. Chem. Eng, 85 (2007) 808–816.CrossRefGoogle Scholar
  21. [21]
    A. A. Soares, J. M. Ferreira and R. P. Chhabra, Flow and forced convection heat transfer in crossflow of non-Newtonian fluids over a circular cylinder, Ind. Eng. Chem. Res, 44 (2005) 5815–5827.CrossRefGoogle Scholar
  22. [22]
    I. Imai, On the asymptotic behavior of viscous fluid flow at a great distance from a cylindrical body, with special reference to Filon’s paradox, Proc. R. Soc. Lond. A, 208 (1951) 487–516.MATHCrossRefGoogle Scholar
  23. [23]
    R. P. Bharti, R. P. Chhabra and V. Eswaran, Numerical study of the steady forced convection heat transfer from an unconfined circular cylinder, Heat Mass Transfer 43 (2007) 639–648.CrossRefGoogle Scholar
  24. [24]
    A. Sharma and V. Eswaran, Effect of aiding and opposing buoyancy on the heat and fluid flow across a square cylinder at Re = 100, Numer. Heat Tr. A-Appl, 45 (2004) 601–624.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Armando A. Soares
    • 1
    • 2
  • Nuno D. Couto
    • 1
    • 2
  • M. Duarte Naia
    • 1
    • 2
    • 3
  • Norberto J. Gonçalves
    • 1
    • 2
    • 4
  • Abel Rouboa
    • 2
    • 5
  1. 1.Escola de Ciências e TecnologiasUniversidade de Trás-os-Montes e Alto DouroVila RealPortugal
  2. 2.CITAB/UTADQuinta de PradosVila RealPortugal
  3. 3.Dep. Eng. Mecânica — Pinhal de MarrocosCEMUC®CoimbraPortugal
  4. 4.GCEPCentro de Física da Universidade do MinhoBragaPortugal
  5. 5.Department of Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations