Journal of Mechanical Science and Technology

, Volume 26, Issue 1, pp 173–179 | Cite as

Influence of discharge energy on machining characteristics in EDM

  • Marin GostimirovicEmail author
  • Pavel Kovac
  • Milenko Sekulic
  • Branko Skoric


The machining characteristics of electrical discharge machining (EDM) directly depend on the discharge energy which is transformed into thermal energy in the discharge zone. The generated heat leads to high temperature, resulting in local melting and evaporation of workpiece material. However, the high temperature also impacts various physical and chemical properties of the tool and workpiece. This is why extensive knowledge of development and transformation of electrical energy into heat is of key importance in EDM. Based on the previous investigations, analytical dependence was established between the discharge energy parameters and the heat source characteristics in this paper. In addition, the thermal properties of the discharged energy were experimentally investigated and their influence on material removal rate, gap distance, surface roughness and recast layer was established. The experiments were conducted using copper electrode while varying discharge current and pulse duration. Analysis and experimental research conducted in this paper allow efficient selection of relevant parameters of discharge energy for the selection of most favorable EDM machining conditions.


Discharge energy Electrical discharge machining Gap distance Material removal rate Surface integrity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Konig, Fertigungsverfahren, Band 3 Abtragen, VDI-Verlag GmbH, Dusseldorf, Germany (1979).Google Scholar
  2. [2]
    B. Ekmekci, A. Sayar, T. Opoz and A. Erden, Geometry and surface damage in micro electrical discharge machining of mocro-holes, J Micromech Microeng, 19 (2009) 1–16.CrossRefGoogle Scholar
  3. [3]
    K. Liu, B. Lauwers and D. Reynaerts, Process capabilities of Micro-EDM and its applications, Int J Adv Manuf Techn, 47 (2010) 11–19.CrossRefGoogle Scholar
  4. [4]
    Y. Y Tsai and C. T. Lu, Influence of current impulse on machining characteristics in EDM, J Mech Sci Technol, 21(10) (2007) 1617–1621.CrossRefGoogle Scholar
  5. [5]
    Y. C. Lin, L. R. Hwang, C. H. Cheng and P. L. Su, Effects of electrical discharge energy on machining performance and bending strength of cemented tungsten carbides, J Mater Process Technol, 206 (2008) 491–499.CrossRefGoogle Scholar
  6. [6]
    K. Liu, D. Reynaerts and B. Lauwers, Influence of the pulse shape on the EDM performance of Si3N4-TiN ceramic composite, CIRP Ann-Manuf Techn, 58 (2009) 217–220.zbMATHCrossRefGoogle Scholar
  7. [7]
    S. H. Yeo, W. Kurnia and P. C. Tan, Critical assessment and numerical comparison of electro-thermal models in EDM, J Mater Process Technol, 203 (2008) 241–251.CrossRefGoogle Scholar
  8. [8]
    J. C. Rebelo, A. M. Dias, D. Kremer and J. L. Lebrun, Influence of EDM pulse energy on the surface integrity of martensitic steels, J Mater Process Technol, 84 (1998) 90–96.CrossRefGoogle Scholar
  9. [9]
    F. L. Amorim and W. L. Weingaertner, The influence of generator actuation mode and process parameters on the performance of finish EDM of a tool steel, J Mater Process Technol, 166 (2005) 411–416.CrossRefGoogle Scholar
  10. [10]
    R. Snoeys and F. S. Van Dijck, Investigation of electro discharge machining operations by means of thermo-mathematical model, CIRP Ann-Manuf Techn, 20(1) (1971) 35–37.Google Scholar
  11. [11]
    A. Singh and A. Ghosh, Thermo-electric model of material removal during electric discharge machining, Int J Mach Tool Manuf, 39 (1999) 669–682.CrossRefGoogle Scholar
  12. [12]
    N. B. Salah, F. Ghanem and K. B. Atig, Numerical study of thermal aspects of electric discharge machining process, Int J Mach Tool Manuf, 46 (2006) 908–911.CrossRefGoogle Scholar
  13. [13]
    B. Izquierdo, J. A. Sanchez, S. Plaza, I. Pombo and N. Ortega, A numerical model of the EDM process considering the effect of multiple discharges, Int J Mach Tool Manuf, 49 (2009) 220–229.CrossRefGoogle Scholar
  14. [14]
    P. J. Wang and K. M. Tsai, Semi-empirical model on work removal and tool wear in electrical discharge machining, J Mater Process Technol, 114 (2001) 1–17.CrossRefGoogle Scholar
  15. [15]
    N. Tosun, The effect of the cutting parameters on performance of WEDM, J Mech Sci Technol, 17(6) (2003) 816–824.Google Scholar
  16. [16]
    S. S. Mahapatra and A. Patnaik, Parametric optimization of wire electrical discharge machining (WEDM) process using taguchi method, J Braz Soc Mech Sci Eng, 28(4) (2007) 422–429.CrossRefGoogle Scholar
  17. [17]
    J. Marafona and J. A. G. Chousal, A finite element model of EDM based on the Joule effect, Int J Mach Tool Manuf, 46 (2006) 595–602.CrossRefGoogle Scholar
  18. [18]
    S. K. Hargrove and D. Ding, Determining cutting parameters in wire EDM based on workpiece surface temperature distribution, Int J Adv Manuf Techn, 34 (2007) 295–299.CrossRefGoogle Scholar
  19. [19]
    K. Salonitis, A. Stournaras, P. Stavropoulos and G. Chryssolouris, Thermal modeling of the material removal rate and surface roughness for die-sinking EDM, Int J Adv Manuf Techn, 40 (2009) 316–323.CrossRefGoogle Scholar
  20. [20]
    J. C. Ferreira, A study of die helical thread cavity surface finish made by Cu-W electrodes with planetary EDM, Int J Adv Manuf Techn, 34 (2007) 1120–1132.CrossRefGoogle Scholar
  21. [21]
    P. Shankar, V. K. Jain and T. Sundarajan, Analysis of spark profiles during EDM process, Mach Sci Technol, 1(2) (1997) 195–217.CrossRefGoogle Scholar
  22. [22]
    S. N. Joshi and S. S. Pande, Development of an intelligent process model for EDM, Int J Adv Manuf Techn, 45 (2009) 300–317.CrossRefGoogle Scholar
  23. [23]
    R. G. D. Steel and J. H. Torrie, Principles and Procedures of Statistics, McGraw-Hill, New York, USA (1960).zbMATHGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marin Gostimirovic
    • 1
    Email author
  • Pavel Kovac
    • 1
  • Milenko Sekulic
    • 1
  • Branko Skoric
    • 1
  1. 1.Department of Production Engineering, Faculty of Technical ScienceUniversity of Novi SadNovi SadSerbia

Personalised recommendations