Journal of Mechanical Science and Technology

, Volume 26, Issue 1, pp 137–143 | Cite as

Design optimization of piezoelectric energy harvester subject to tip excitation

Article

Abstract

This research proposes a new design for a cantilever-type piezoelectric energy harvester in which a free tip is excited by any rotary motion of mechanical devices. A coupled field finite element model for the harvester is constructed using ANSYS and verification study is performed. Design optimization on the shape of the harvester is done to maximize output power. The design optimization result shows excellent performance when compared to a simple rectangular cantilever or the well-known tapered cantilever. The design results are prototyped and their improved performances are experimentally attested.

Keywords

Energy harvesting Piezoelectricity PVDF Vibration Rotary motion Tip excitation Shape optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Roundy, P. K. Wright and J. M. Rabaey, Energy scavenging for wireless sensor networks with special focus on vibrations, Kluwer Academic Publishers (2004).Google Scholar
  2. [2]
    J. Kymissis, C. Kendall, J. Paradiso and N. Gershenfeld, Parasitic power harvesting in shoes, Proc. 2nd IEEE Int. Conf. Wearable Computing, California, USA (1998) 132–139.Google Scholar
  3. [3]
    N. S. Shenck and J. A. Paradiso, Energy scavenging with shoe-mounted piezoelectrics, IEEE Micro., 21 (2001) 30–42.CrossRefGoogle Scholar
  4. [4]
    E. S. Leland, E. M. Lai and P. K. Wright, A self-powered wireless sensor for indoor environmental monitoring, WNCG Conference, Austin, Texas, USA (2004).Google Scholar
  5. [5]
    J. Feenstra, J. Granstrom and H. Sodano, Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack, Mechanical Systems and Signal Processing, 22 (2008) 721–734.CrossRefGoogle Scholar
  6. [6]
    N. Elvin, A. Elvin and D. H. Choi, A self-powered damage detection sensor, J. Strain Analysis, 38(2) (2003) 115–124.CrossRefGoogle Scholar
  7. [7]
    P. Glynne-Jones, S. P. Beeby and N. M. White, Towards a piezoelectric vibration powered microgenerator, IEE Proc.-Sci. Meas. Technol., 148 (2001) 68–72.CrossRefGoogle Scholar
  8. [8]
    S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright and V. Sundararajan, Improving power output for vibration-based energy scavengers, IEEE Pervasive Comput., 4 (2005) 28–36.CrossRefGoogle Scholar
  9. [9]
    F. Goldschmidtboeing and P. Woias, Characterization of different beam shapes for piezoelectric energy harvesting, J. Micromech. Microeng., 18(10) (2008) 104013.CrossRefGoogle Scholar
  10. [10]
    P. Simon and S. Yves, Improving the performance of a piezoelectric energy harvester using a variable thickness beam, Smart materials & structures, 19(10) (2010) 105020.CrossRefGoogle Scholar
  11. [11]
    B. Zheng, C. J. Chang and H. C. Gea, Topology optimization for piezoelectric energy harvesting devices, 7th World Congress on Structural and Multidisciplinary Optimization, Seoul, Korea (2007) 1677–1685.Google Scholar
  12. [12]
    F. Khameneifar, M. Moallem and S. Arzanpour, Modeling and analysis of a piezoelectric energy scavenger for rotary motion applications, Journal of vibration and acoustics, 133(1) (2011) 011005.CrossRefGoogle Scholar
  13. [13]
    Y. Hashimoto, O. Takahashi, H. Miyazaki, T. Funasaka and M. Furuhata, Power generation method and power generator using a piezoelectric element, and electronic device using the power, United States Patent No. 5835996 (1998).Google Scholar
  14. [14]
    C. B. Carroll, Piezoelectric rotary electrical energy generator, United States Patent No. US 6194815 B1 (2001).Google Scholar
  15. [15]
    C. Chen, R. A. Islam and S. Priya, Electric energy generator, ieee transactions on ultrasonics, Ferroelectrics and Frequency Control, 53(3) (2006) 656–661.CrossRefGoogle Scholar
  16. [16]
    A. Erturk and D. J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart Materials and Structures, 18 (2009) 025009.CrossRefGoogle Scholar
  17. [17]
    Measurement Specialties Inc., Piezo Film Sensors Technical Manual, (cited 19 October 2010) Available from: http://www.media.mit.edu/resenv/classes/MAS836/Readings/MSI-techman.pdf.
  18. [18]
  19. [19]
    M. L. James, G. M. Smith, J. C. Wolfold and P. W. Whaley, Vibration of Mechanical and Structural Systems, Harper Collins College Publishers, New York, USA (1994).Google Scholar
  20. [20]
    A. D. Belegundu and T. R. Chandrupatla, Optimization Concepts and Applications in Engineering, Prentice Hall, New Jersey, USA (1999).MATHGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations