Advertisement

Journal of Mechanical Science and Technology

, Volume 25, Issue 4, pp 839–845 | Cite as

Experimental investigations on impaction pin nozzles for inlet fogging system

  • Abhilash Suryan
  • Yong Kwan Yoon
  • Dong Sun Kim
  • Heuy Dong KimEmail author
Article

Abstract

Increasing power demands have necessitated the development of energy efficient systems in the industrial sector. At present, about 10% of the overall electric power used by large industrial plants is consumed by high-capacity compressors supplying compressed air. Likewise, in a gas turbine power plant, nearly half the generated power is used for driving the compressor. The work of compression is proportional to inlet air temperature, and cooling the inlet air can save considerable amount of power in large turbo machines during hot summer months. Inlet fogging is a popular means of inlet air cooling, and fog nozzles are the most critical components in an inlet fogging installation. Majority of these installations employ impaction pin nozzles. In the present work, experiments are conducted over a wide range of operating parameters in variable length wind tunnels of different cross sections in order to investigate the performance of impaction pin nozzle in inlet fogging. Flow visualization and measurements are carried out to analyze the fog behavior and identify suitable nozzle locations in typical air ducts. The results show that impaction pin nozzles are suitable for inlet fogging applications.

Keywords

Energy saving Evaporative cooling Impaction pin nozzle Inlet fogging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. L. Dixon, Fluid Mechanics and Thermodynamics of Turbomachinery, Fourth Ed. Elsevier Butterworth-Heinemann, Burlington, MA, USA (1998).Google Scholar
  2. [2]
    M. Chaker, C. B. Meher-Homji and T. R. Mee III, Inlet Fogging of Gas Turbine Engines-Part A: Fog Droplet Thermodynamics, Heat Transfer and Practical Considerations, Proc. of ASME Turbo Expo 2002, ASME Paper: 2002-GT-30562, Amsterdam, Netherlands (2002).Google Scholar
  3. [3]
    C. B. Meher-Homji and T. R. Mee III, Inlet Fogging of Gas Turbine Engines-Part A: Theory, Psychrometrics and Fog Generation, Proc. of ASME Turbo Expo 2000, ASME Paper No. 2000-GT-307, Munich, Germany (2000).Google Scholar
  4. [4]
    C. B. Meher-Homji and T. R. Mee III, Inlet Fogging of Gas Turbine Engines-Part B: Practical Considerations, Control and O&M Aspects, Proc. of ASME Turbo Expo 2000, ASME Paper No. 2000-GT-308, Munich, Germany (2000).Google Scholar
  5. [5]
    C. B. Meher-Homji and T. R. Mee III, Gas Turbine Power Augmentation by Fogging of Inlet Air, Proc. of 28th Turbomachinery Symposium, Houston, Texas, USA (1999).Google Scholar
  6. [6]
    M. Chaker and C. B. Meher-Homji, Inlet Fogging of Gas Turbine Engines: Climatic Analysis of gas Turbine Evaporative Cooling Potential of International Locations, Proc. of ASME Turbo Expo 2002, ASME Paper: 2002-GT-30559, Amsterdam, Netherlands (2002).Google Scholar
  7. [7]
    A. Suryan, D. S. Kim, H. D. Lee, J. K. Kwon and H. D. Kim, Analytical Study on Evaporative Cooling Potential and Power Gains of Air Compressors by Inlet Fogging, Proc. of KSME Autumn Conference, Pyeongchang, Korea (2008) 2637–2641.Google Scholar
  8. [8]
    R. Parsons, ASHRAE Handbook-Fundamentals, ASHRAE Ed. Atlanta, Georgia, USA (2001).Google Scholar
  9. [9]
    H. S. Ren, Construction of a Generalized Psychrometric Chart for Different Pressures, Int. Journal of Mech. Engg. Education, 32/2, Manchester University Press, Manchester, U. K. (2005) 212–222.Google Scholar
  10. [10]
    A. Suryan, D. S. Kim and H. D. Kim, Experimental Study on Inlet Fogging System using Two-fluid Nozzles, Journal of Thermal Science, Vol. 19, No. 2, Springer (2010) 132–135.CrossRefGoogle Scholar
  11. [11]
    M. Chaker, C. B. Meher-Homji and T. R. Mee III, Inlet Fogging of Gas Turbine Engines-Part B: Fog Droplet Sizing Analysis, Nozzle Types, Measurement and Testing, Proc. of ASME Turbo Expo 2002, ASME Paper: 2002-GT-30563, Amsterdam, Netherlands (2002).Google Scholar
  12. [12]
    M. Chaker, C. B. Meher-Homji and T. R. Mee III, Inlet Fogging of Gas Turbine Engines: Experimental and Analytical Investigations on Impaction Pin Nozzle Behavior, Proc. of ASME Turbo Expo 2003, ASME Paper: 2003-GT-38801, Atlanta, Georgia, USA (2003).Google Scholar
  13. [13]
    D. E. Willems and P. D. Ritland, A Pragmatic Approach to Evaluation of Inlet Fogging System Effectiveness, Proc. of International Joint Power Generation Conference, 2003, IJPGC 2003-40075, Atlanta, Georgia, USA (2003).Google Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Abhilash Suryan
    • 1
  • Yong Kwan Yoon
    • 2
  • Dong Sun Kim
    • 2
  • Heuy Dong Kim
    • 1
    Email author
  1. 1.School of Mechanical EngineeringAndong National UniversityAndongKorea
  2. 2.FMTRCDaejoo Machinery Co.DaeguKorea

Personalised recommendations