Advertisement

Journal of Mechanical Science and Technology

, Volume 24, Issue 11, pp 2215–2220 | Cite as

Numerical study on spatial distribution of silver nanoparticles inside whole-body type inhalation toxicity chamber

  • Jae Ho Cho
  • Atul Kulkarni
  • Hojoong Kim
  • Jin Uk Yoon
  • Jae Hyuck Sung
  • Il Je Yu
  • Taesung KimEmail author
Article

Abstract

Silver nanoparticles are among the fastest growing product categories in the nanotechnology industry. Several experimental studies reported earlier for its toxicity and its associated risks. Uniform distribution of nanoparticle concentration in inhalation toxicity exposure chambers is important in the conduct of inhalation experimental evaluation. However, relatively little is known. Several factors, including nanoparticle size, degree of mixing, and chamber design, may influence the nanoparticles distribution in whole-body exposure chamber. In the present work we investigated numerically the silver nanoparticles concentration distribution and particle trajectory in the whole body inhalation toxicity test chamber. A three dimensional numerical simulation was performed using the commercially available computational fluid dynamics code Fluent with two models, discrete phase model (DPM) and fine particle model (FPM) to calculate spatial particle trajectories and concentration. The simulated results show that the silver nanoparticle trajectories and concentration distribution are dependent on inhalation toxicity chamber geometry.

Keywords

Silver nanoparticles Numerical study CFD Inhalation toxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Molhave, S. K. Kjaergaard and J. Attermann, Sensory and other neurogenic effects of exposures to airborne office dust. Atmos. Environ. 34 (2000) 4755–4766.CrossRefGoogle Scholar
  2. [2]
    M. J. Mendell, W. J. Fisk, M. R. Petersen, C. J. Hines, M. Dong, D. Faulkner, J. A. Deddens, M. Ruder, D. Sullivan and M. F. Boeniger, Indoor particles and symptoms among office workers: Results from a double-blind cross-over study. Epidemiology 13 (2002) 296–304.CrossRefGoogle Scholar
  3. [3]
    T. Schneider, J. Sundell, W. Bischof, M. Bohgard, J. W. Cherrie, P. A. Clausen, S. Dreborg, J. Kildeso, S. K. Kjaergaard, M. Lovik, P. Pasanen and K. Skyberg, ’EUROPART’. Airborne particles in the indoor environment. A European interdisciplinary review of scientific evidence on associations between exposure to particles in buildings and health effects. Indoor Air 13 (2003) 38–48.CrossRefGoogle Scholar
  4. [4]
    Z. Zhang and Q. Chen, Experimental measurements and numerical simulations of particle transport and distribution in ventilated rooms. Atmos. Environ 40 (2006) 3396–3408.CrossRefGoogle Scholar
  5. [5]
    S. A. Blaser, M. Scheringer, M. MacLeod and K. Hungerbuhler, Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Sci. Total Environ 390 (2008) 396–409.CrossRefGoogle Scholar
  6. [6]
    K. L. Dreher, Health and environmental impact of nanotechnology: Toxicological assessment of manufactured nanoparticles. Toxicol. Sci 77 (2004) 3–5.CrossRefGoogle Scholar
  7. [7]
    A. Riddle, D. Carruthers, A. Sharpe, C. McHugh and J. Stocker, Comparisons between FLUENT and ADMS for atmospheric dispersion modeling. Atmos. Environ 38 (2004) 1029–1038.CrossRefGoogle Scholar
  8. [8]
    Z. Zhang and Q. Chen, Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmos. Environ 41 (2007) 5236–5248.CrossRefGoogle Scholar
  9. [9]
    K. R. Minard, D. R. Einstein, R. E. Jacob, S. Kabilan, A. P. Kuprat, C. A. Timchalk, L. L. Trease and R. A. Corley, Application of Magnetic Resonance (MR) Imaging for the Development and Validation of Computational Fluid Dynamic (CFD) Models of the Rat Respiratory System. Inhal. Toxicol 18 (2006) 787–794.CrossRefGoogle Scholar
  10. [10]
    M. J. Oldham, Challenges in Validating CFD-Derived Inhaled Aerosol Deposition Predictions. Inhal. Toxicol 18 (2006) 781–786.CrossRefGoogle Scholar
  11. [11]
    S. Murakami, S. Kato, S. Nagano and S. Tanaka, Diffusion characteristics of airborne particles with gravitational settling in a convection-dominant indoor flow field. ASHRAE Transactions 110 (1992) 88–95.Google Scholar
  12. [12]
    B. Zhao, Z. Zhang, X. Li and D. Huang, Comparison of diffusion characteristics of aerosol particles in different ventilated rooms by numerical method. ASHRAE Transactions 110 (2004) 88–95.Google Scholar
  13. [13]
    B. Zhao, Z. Zhang and X. Li, Numerical study of the transport of droplets or particles generated by respiratory system indoors. Building and Environment 40 (2005) 1032–1039.CrossRefGoogle Scholar
  14. [14]
    C. Beghein, Y. Jiang and Q. Y. Chen, Using large eddy simulation to study particle motions in a room. Indoor Air 15 (2005) 281–290.CrossRefGoogle Scholar
  15. [15]
    J. H. Sung, J. H. Ji, J. U. Yoon, D. S. Kim, M. Y. Song, J. Jeong, B. S. Han, J. H. Han, Y. H. Chung, J. Kim, T. S. Kim, H. K. Chang, E. J. Lee, J. H. Lee and I. J. Yu, Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal. Toxicol 20 (2008) 567–574.CrossRefGoogle Scholar
  16. [16]
    W. C. Hind, Aerosol Technology: properties, behavior, and measurement of airborne particles, John Wiley and Son, Inc., New York, 1999.Google Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jae Ho Cho
    • 1
  • Atul Kulkarni
    • 2
  • Hojoong Kim
    • 1
  • Jin Uk Yoon
    • 3
  • Jae Hyuck Sung
    • 4
  • Il Je Yu
    • 5
  • Taesung Kim
    • 1
    • 2
    Email author
  1. 1.SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwonKorea
  2. 2.School of Mechanical EngineeringSungkyunkwan UniversitySuwonKorea
  3. 3.HCT Co. Ltd.IncheonKorea
  4. 4.Korea Environment & Merchandise Testing InstituteIncheonKorea
  5. 5.Fusion Technology Research InstitutionHoseo UniversityAsanKorea

Personalised recommendations