Journal of Mechanical Science and Technology

, Volume 24, Issue 8, pp 1603–1609

Single-point diamond turning of electroless nickel for flat X-ray mirror



X-ray mirrors require a super-smooth surface to prevent strong X-ray scattering. We examined the fabrication possibility of the X-ray mirror by single-point diamond turning (SPDT) for electroless nickel. The stable and unstable cutting modes for the electroless nickel were obtained by observing the relative position of a diamond tool for machining. A super-smooth surface of 0.95 nm rms was achieved within the stable cutting mode. The surface roughness of the electroless nickel mirror measured with an optical profiler was compared with the X-ray reflectivity measurement. The electroless nickel mirror could be successfully used as a soft X-ray reflector and a low-pass filter for the hard X-rays.


Electroless nickel Single-point diamond turning Surface roughness Ultraprecision machining X-ray mirror 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. J. Evans, Precision Engineering: An Evolutionary View, Cranfield Press, Cranfield, UK, (1989).Google Scholar
  2. [2]
    R. L. Rhorer and C. J. Evans, Fabrication of optics by diamond turning, OSA Handbook of Optics, 2 nd Ed., Vol. 1, McGraw-Hill, Washington DC, USA (1995).Google Scholar
  3. [3]
    Z. Yean, W. Lee, Y. Yao and M. Zhou, Effect of crystallographic orientations on cutting force and surface quality in diamond cutting of single crystal, Ann. CRIP 43(1) (1994) 39–42.CrossRefGoogle Scholar
  4. [4]
    M. Sato, T. Yamazaki, Y. Shimizu and T. Takabayashi, A study on the microcutting of aluminum single crystals, JSME Int. J. Series C 34(4) (1991) 540–545.Google Scholar
  5. [5]
    S. C. Fawcett and D. Engelhaupt, Development of Wolter I x-ray optics by diamond turning and electrochemical replication, Prec. Eng. 17(4) (1995) 290–297.CrossRefGoogle Scholar
  6. [6]
    M. J. Boyle and H. G. Ahlstrom, Imaging characteristics of an axisymmetric grazing incidence x-ray microscope designed for laser fusion research, Rev. Sci. Instrum. 49(6) (1978) 746–751.CrossRefGoogle Scholar
  7. [7]
    D. L. Hibbard, Electroless nickel for optical applications, Proc. SPIE CR67 (1997) 179–205.Google Scholar
  8. [8]
    J. S. Taylor, C. K. Syn, T. T. Saito and R. R. Donaldson, Surface finish measurements of diamond-turned electroless-nickel-plated mirrors, Opt. Eng. 25(9) (1986) 1013–1020.Google Scholar
  9. [9]
    T. Moriwaki, E. Shamoto and K. Inoue, Ultra-precision ductile cutting of glass by applying ultrasonic vibration, Ann. CIRP 41 (1992) 141–144.CrossRefGoogle Scholar
  10. [10]
    A. Pramanik, K. S. Neo, M. Rahman, X. P. Li, M. Sawa and Y. Maeda, Cutting performance of diamond tools during ultra-precision turning of electroless-nickel plated die materials, J. Mater. Process. Technol. 140 (2003) 308–313.CrossRefGoogle Scholar
  11. [11]
    N. P. Hung, Z. W. Zhong, K. K. Lee and C. F. Chai, Precision grinding and facing of copper-beryllium alloys, Prec. Eng. 23 (1999) 293–304.CrossRefGoogle Scholar
  12. [12]
    J. K. Myler, R. A. Parker and A. B. Harrison, High quality diamond turning, Proc. SPIE 1333 (1990) 58–62.CrossRefGoogle Scholar
  13. [13]
    C. J. Evans, R. S. Polvani and A. Mayer, Diamond turning electro-deposited nickel alloys, OSA Technical Digest Series 9 (1990) 110–113.Google Scholar
  14. [14]
    K. M. Rezaur Rahman, M. Rahman, K. S. Neo, M. Sawa and Y. Maeda, Microgrooving on electroless nickel plated materials using a single crystal diamond tool, Int. J. Adv. Manuf. Technol. 27 (2006) 911–917.CrossRefGoogle Scholar
  15. [15]
    R. A. Paquin and M. R. Howells, Mirror materials for synchrotron radiation optics, Proc. SPIE 3152 (1997) 2–16.CrossRefGoogle Scholar
  16. [16]
    A. G. Michette, Optical system for soft X rays, Plenum Press, New York, USA (1986).Google Scholar
  17. [17]
    D. Attwood, Soft x-ray and extreme ultraviolet radiation: principles and applications, Cambridge University Press, Cambridge, UK (1999).Google Scholar
  18. [18]
    B. L. Henke, E. M. Gullikson and J. C. Davis, X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92, At. Data Nucl. Data Tables 54(2) (1993) 181–342.CrossRefGoogle Scholar
  19. [19]
    K. S. Chon, Y. Namba and K. H. Yoon, Optimization of a Wolter type I mirror for a soft X-ray microscope, Prec. Eng. 30 (2006) 223–230.CrossRefGoogle Scholar
  20. [20]
    J. Kirz, C. Jacobsen, and M. Howells, Soft x-ray microscopes and their biological applications, Q. Rev. Biophys. 28(1) (1995) 33–130.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Radiological ScienceCatholic University of DaeguGyeongbukKorea
  2. 2.Department of Mechanical EgineeringChubu UniversityAichiJapan

Personalised recommendations