Journal of Mechanical Science and Technology

, Volume 22, Issue 11, pp 2203–2212

AFM-based identification of the dynamic properties of globular proteins: simulation study

  • Deok-Ho Kim
  • Jungyul Park
  • Moon K. Kim
  • Keum-Shik Hong

DOI: 10.1007/s12206-008-0706-0

Cite this article as:
Kim, DH., Park, J., Kim, M.K. et al. J Mech Sci Technol (2008) 22: 2203. doi:10.1007/s12206-008-0706-0


Nowadays a mathematical model-based computational approach is getting more attention as an effective tool for understanding the mechanical behaviors of biological systems. To find the mechanical properties of the proteins required to build such a model, this paper investigates a real-time identification method based on an AFM nanomanipulation system. First, an AFM-based bio-characterization system is introduced. Second, a second-order time-varying linear model representing the interaction between an AFM cantilever and globular proteins in a solvent is presented. Finally, we address a real-time estimation method in which the results of AFM experiments are designed to be inputs of the state estimator proposed here. Our attention is restricted to a theoretical feasibility analysis of the proposed methodology. We simply set the mechanical properties of the particular protein such as mass, stiffness, and damping coefficient in the system model prior to running the simulation. Simulation results show very good agreement with the preset properties. We anticipate that the realization of the AFM-based bio-characterization system will also provide an experimental validation of the proposed identification procedure in the future. This methodology can be used to determine a model of protein motion for the purpose of computer simulation and for a real-time modification of protein deformation.


Nanomechanics AFM cantilever Proteins Dynamic parameters System identification 

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Deok-Ho Kim
    • 1
  • Jungyul Park
    • 2
  • Moon K. Kim
    • 3
  • Keum-Shik Hong
    • 4
  1. 1.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Mechanical EngineeringSogang UniversitySeoulKorea
  3. 3.School of Mechanical EngineeringSungkyunkwan UniversitySuwonKorea
  4. 4.School of Mechanical EngineeringPusan National UniversityBusanKorea

Personalised recommendations