Advertisement

KSCE Journal of Civil Engineering

, Volume 23, Issue 8, pp 3616–3627 | Cite as

Determination of Optimal Configuration for Mega Bracing Systems in Steel Frames using Genetic Algorithm

  • Mohammadreza Baradaran
  • Morteza MadhkhanEmail author
Structural Engineering
  • 67 Downloads

Abstract

Mega bracing is one of the recently emphasized methods for lateral bracing of structures. In the present study, various configurations of mega bracing systems in terms of installation angle for lateral bracing of steel structures are evaluated and optimized. The investigated frames are designed and optimized using genetic algorithm (GA) according to LRFD-AISC (load and resistance factor design, american institute of steel construction). Frame analysis is carried out by means of finite element method, while optimization is conducted using GA considering three different types of selection and crossover, simultaneously. The results demonstrate that the optimum angle of mega bracing in steel frames is within the range of 36° to 42° with regard to the frame height and span. Furthermore, with increase in frame height, the employment of optimally distributed mega braces along the height of the frame results in reduction of story drifts and also the frame weight. Additionally, simultaneous utilization of various selection and crossover types in GA optimization leads to an increase in convergence rate of optimum weight of the frame as well as reduction in the required computations.

Keywords

optimum design mega bracing system steel frame genetic algorithm moment resisting frame optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANSI/AISC 341-16 (2016). Seismic provisions for structural steel buildings, ANSI/AISC 341-16, American Institute of Steel Construction, Chicago, IL, USA.Google Scholar
  2. ANSI/AISC 360-16 (2016). Specification for structural steel buildings, ANSI/AISC 360-16, American Institute of Steel Construction, Chicago, IL, USA.Google Scholar
  3. Alavi, A., Rahgozar, P., and Rahgozar, R. (2018). “Minimum-weight design of high-rise structures subjected to flexural vibration at a desired natural frequency.” Structural Design of Tall and Special Buildings Journal, Vol. 27, No. 15, p. 1515, DOI:  https://doi.org/10.1002/tal.1515.CrossRefGoogle Scholar
  4. Alberdi, R. and Khandelwal, K. (2015). “Comparison of robustness of metaheuristic algorithms for steel frame optimization.” Journal of Engineering Structures, Vol. 102, pp. 40–60, DOI:  https://doi.org/10.1016/j.engstruct.2015.08.012.CrossRefGoogle Scholar
  5. Ali, M. M. and Moon, K. S. (2007). “Structural developments in tall buildings: Current trends and future prospects.” Journal of Architectural Science Review, Vol. 50, No. 3, pp. 205–223, DOI:  https://doi.org/10.3763/asre.2007.5027.CrossRefGoogle Scholar
  6. Ali, M. M. and Moon, K. S. (2018). “Advances in structural systems for tall buildings: Emerging developments for contemporary urban giants.” Buildings, Vol. 8, No. 8, p. 104, DOI:  https://doi.org/10.3390/buildings8080104.CrossRefGoogle Scholar
  7. Al-Kodmany, K. (2018). “Sustainability and the 21st century vertical city: A review of design approaches of tall buildings.” Buildings, Vol. 8, No. 8, p. 102, DOI:  https://doi.org/10.3390/buildings8080102.CrossRefGoogle Scholar
  8. Al-Kodmany, K. and Ali, M. M. (2016). “An overview of structural and aesthetic developments in tall buildings using exterior bracing and diagrid systems.” International journal of High-Rise Building, Vol. 5, No. 4, pp. 271–291, DOI:  https://doi.org/10.21022/IJHRB.2016.5.4.271.CrossRefGoogle Scholar
  9. ASCE/SEI 7–16 (2016). Minimum design loads and associated criteria for buildings and other structures, ASCE/SEI 7–16, American Society of Civil Engineers, Reston, VA, USA.Google Scholar
  10. Azad, S. K. and Topkaya, C. (2017). “A review of research on steel eccentrically braced frames.” Journal of Constructional Steel Research, Vol. 128, pp. 53–73, DOI:  https://doi.org/10.1016/j.jcsr.2016.07.032.CrossRefGoogle Scholar
  11. Baldock, R. and Shea, K. (2006). “Structural topology optimization of braced steel frameworks using genetic programming.” Proc. EG-ICE 2006: Intelligent Computing in Engineering and Architecture, Ascona, Switzerland, Vol. 4200, pp. 54–61, DOI:  https://doi.org/10.1007/11888598_6.Google Scholar
  12. Brunesi, E., Nascimbene, R., and Casagrande, L. (2016). “Seismic analysis of high-rise mega braced frame core buildings.” Journal of Engineering Structures, Vol. 115, pp. 1–17, DOI:  https://doi.org/10.1016/j.engstruct.2016.02.019.CrossRefGoogle Scholar
  13. Camp, C. V., Bichon, J., and Stovall, S. P. (2005). “Design of steel frames using ant colony optimization.” Journal of Structural Engineering, Vol. 131, No. 3, pp. 369–79, DOI:  https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(369).CrossRefGoogle Scholar
  14. Changizi, N. and Jalalpour, M. (2018). “Topology optimization of steel frame structures with constraints on overall and individual member instabilities.” Journal of Finite Elements in Analysis and Design, Vol. 141, pp. 119–134, DOI:  https://doi.org/10.1016/j.finel.2017.11.003.MathSciNetCrossRefGoogle Scholar
  15. Dao, S. D., Abhary, K., and Marian, R. (2016). “An improved structure of genetic algorithms for global optimization.” Progress in Artificial Intelligence, Vol. 5, No. 3, pp. 155–163, DOI  https://doi.org/10.1007/s13748-016-0091-3.CrossRefGoogle Scholar
  16. Dao, S. D., Abhary, K., and Marian, R. (2017). “An innovative framework for designing genetic algorithm structures.” Journal of Expert Systems with Applications, Vol. 90, pp. 196–208, DOI:  https://doi.org/10.1016/j.eswa.2017.08.018.CrossRefGoogle Scholar
  17. Degertekin, S. O. (2008). “Optimum design of steel frames using harmony search algorithm.” Journal of Structural and Multidisciplinary Optimization, Vol. 36, No. 4, pp. 393–401, DOI:  https://doi.org/10.1007/s00158-007-0177-4.CrossRefGoogle Scholar
  18. Dumonteil, P. (1992). “Simple equations for effective length factors.” Engineering Journal (AISC), Vol. 29, No. 3, pp. 111–115.Google Scholar
  19. Fahimnia, B., Luong, L., and Marian, R. (2008). “Optimization/simulation modeling of the integrated production-distribution plan: An innovative survey.” Journal of WSEAS Transactions on Business and Economics, Vol. 3, No. 5, pp. 52–65.Google Scholar
  20. Fang, B., Zhao, X., Yuan, J., and Wu, X. (2018). “Outrigger system analysis and design under time-dependent actions for super-tall steel buildings.” Structural Design of Tall and Special Buildings Journal, Vol. 27, No. 12, p. 1492, DOI:  https://doi.org/10.1002/tal.1492.CrossRefGoogle Scholar
  21. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning, Addison-Wesley Press, Boston, MA, USA.zbMATHGoogle Scholar
  22. Gunel, M. H. and Ilgin, H. E. (2007). “A proposal for the classification of structural systems of tall buildings.” Journal of Building and Environment, Vol. 42, No. 7, pp. 2667–2675.CrossRefGoogle Scholar
  23. Hasancebi, O., Carbas, S., Dogan, E., Erdal, F., and Saka, M. P. (2010). “Comparison of non-deterministic search techniques in the optimum design of real size steel frames.” Journal of Computers and Structures, Vol. 88, Nos. 17–18, pp. 1033–1048, DOI:  https://doi.org/10.1016/j.compstruc.2010.06.006.CrossRefGoogle Scholar
  24. Holland, J. H. (1975). Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, MI, USA.Google Scholar
  25. Huang, J. and Wang, J. (2011). “Topology optimization of bracing systems for multistory steel frames under earthquake loads.” Journal of Advanced Materials Research, Vol. 255, pp. 2388–2393, DOI:  https://doi.org/10.4028/www.scientific.net/AMR.255-260.2388.CrossRefGoogle Scholar
  26. Kamgar, R. and Rahgozar, R. (2017). “Determination of optimum location for flexible outrigger system in tall buildings with constant cross-section consisting of framed tube, shear core, belt truss and outrigger system using energy method.” International Journal of Steel Structures, Vol. 17, No. 1, pp. 1–8, DOI:  https://doi.org/10.1007/s13296-014-0172-8.CrossRefGoogle Scholar
  27. Kaveh, A. (2017). Advances in metaheuristic algorithms for optimal design of structures (2nd Ed.), Springer, Cham, Switzerland, DOI:  https://doi.org/10.1007/978-3-319-46173-1.zbMATHCrossRefGoogle Scholar
  28. Kaveh, A. and Talatahari, S. (2010). “An improved ant colony optimization for the design of planar steel frames.” Journal of Engineering Structures, Vol. 32, No. 3, pp. 864–873, DOI:  https://doi.org/10.1016/j.engstruct.2009.12.012.zbMATHCrossRefGoogle Scholar
  29. Khanorkar, A. Sukhdeve, S., Denge, S. V., and Raut, S. P. (2016). “Outrigger and belt truss system for tall building to control deflection: A review.” Journal of Global Research and Development, Vol. 1, No. 6, pp. 6–15.Google Scholar
  30. Kicinger, R., Arciszewski, T., and Dejong, K. (2005). “Evolutionary design of steel structures in tall buildings.” Journal of Computing in Civil Engineering, Vol. 19, No. 3, pp. 223–238, DOI:  https://doi.org/10.1061/(ASCE)0887-3801(2005)19:3(223).CrossRefGoogle Scholar
  31. Kioumarsi, B., Kheyroddin, A., Gholhaki, M., Kiuomarsi, M., and Hooshmandi, S. (2017). “Effect of span length on behavior of MRF accompanied with CBF and MBF systems.” Journal of Procedia Engineering, Vol. 171, pp. 1332–1340, DOI:  https://doi.org/10.1016/j.proeng.2017.01.431 CrossRefGoogle Scholar
  32. Lee, S. and Tovar, A. (2014). “Outrigger placement in tall buildings using topology optimization.” Journal of Engineering Structures, Vol. 74, No. 1, pp. 122–129, DOI:  https://doi.org/10.1016/j.engstruct.2014.05.019.CrossRefGoogle Scholar
  33. Liang, Q. Q., Xie, Y. M., and Steven, G. P. (2000). “Optimal topology design of bracing systems for multistory steel frames.” Journal of Structural Engineering, Vol. 126, No. 7, pp. 823–829, DOI:  https://doi.org/10.1061/(ASCE)0733-9445(2000)126:7(823).CrossRefGoogle Scholar
  34. Lin, M. H. and Tsai, J. F. (2011). “Finding multiple optimal solutions of signomial discrete programming problems with free variables.” Journal of Optimization and Engineering, Vol. 12, No. 3, pp. 425–443, DOI:  https://doi.org/10.1007/s11081-011-9137-3.MathSciNetzbMATHCrossRefGoogle Scholar
  35. Liu, C., Li, Q., Lu, Z., and Wu1, H. (2018). “A review of the diagrid structural system for tall buildings.” Structural Design of Tall and Special Buildings Journal, Vol. 27, No. 4, p. 1445, DOI:  https://doi.org/10.1002/tal.1445.CrossRefGoogle Scholar
  36. Ma, B. and Xia, Y. (2017). “A tribe competition-based genetic algorithm for feature selection in pattern classification.” Journal of Applied Soft Computing, Vol. 58, pp. 328–338, DOI:  https://doi.org/10.1016/j.asoc.2017.04.042.CrossRefGoogle Scholar
  37. MacDonald, R. (2005). Genetic algorithms with steel structures: A literature review, Department of civil and environmental engineering, Brigham Young University, Provo, Utah, USA.Google Scholar
  38. Memari, A. M. and Madhkhan, M. (1999). “Optimal design of steel frames subject to gravity and seismic codes prescribed lateral forces.” Journal of Structural and Multidisciplinary Optimization, Vol. 18, No. 1, pp. 56–66, DOI:  https://doi.org/10.1007/s001580050068.Google Scholar
  39. Moghaddam, H., Hajirasouliha, I., and Doostan, A. (2005). “Optimum seismic design of concentrically braced steel frames: Concepts and design procedures.” Constructional Steel Research, Vol. 61, No. 2, pp. 151–166, DOI:  https://doi.org/10.1016/j.jcsr.2004.08.002.CrossRefGoogle Scholar
  40. Moon, K. S. (2010). “Stiffness based design methodology for steel braced tube structures: A sustainable approach.” Journal of Engineering Structures, Vol. 32, No. 10, pp. 3163–3170, DOI:  https://doi.org/10.1016/j.engstruct.2010.06.004.CrossRefGoogle Scholar
  41. Nassania, D. E., Hussein, A. K., and Mohammed, A. H. (2017). “Comparative response assessment of steel frames with different bracing systems under seismic effect.” Journal of Structures, Vol. 11, pp. 229–242, DOI:  https://doi.org/10.1016/j.istruc.2017.06.006.CrossRefGoogle Scholar
  42. Ozcelik, R., Dikiciasik, Y., and Erdil, E. F. (2017). “The development of the buckling restrained braceswith new end restrains.” Journal of Constructional Steel Research, Vol. 138, pp. 208–220, DOI:  https://doi.org/10.1016/j.jcsr.2017.07.008.CrossRefGoogle Scholar
  43. Patil, D. M. and Sangle, K. K. (2016). “Seismic behaviour of outrigger braced systems in high rise 2-d steel buildings.” Journal of Structures, Vol. 8, pp. 1–16, DOI:  https://doi.org/10.1016/j.istruc.2016.07.005.CrossRefGoogle Scholar
  44. Paul, P. V., Moganarangan, N., Sampath Kumar, S., Raju, R., Vengattaraman, T., and Dhavachelvan, P. (2015). “Performance analyses over population seeding techniques of the permutation-coded genetic algorithm.” Journal of Applied Soft Computing, Vol. 32, pp. 383–402,  https://doi.org/10.1016/j.asoc.2015.03.038.CrossRefGoogle Scholar
  45. Pezeshk, S., Camp, C. V., and Chen, D. (2000). “Design of nonlinear framed structures using genetic algorithms.” Journal of Structural Engineering, Vol. 126, No. 3, pp. 382–388, DOI:  https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(382).CrossRefGoogle Scholar
  46. Rahgozar, R., Ahmadi, A. R., Ghelichi, M., Goudarzi, Y., Malekinejad, M., and Rahgozar, P. (2014). “Parametric stress distribution and displacement functions for tall buildings under lateral loads.” Structural Design of Tall and Special Buildings Journal, Vol. 23, No. 1, pp. 22–41, DOI:  https://doi.org/10.1002/tal.1016.CrossRefGoogle Scholar
  47. Rahgozar, R., Mahmoudzadeh, Z., Malekinejad, M., and Rahgozar, P. (2015). “Dynamic analysis of combined system of framed tube and shear walls by galerkin method using B-spline functions.” Structural Design of Tall and Special Buildings Journal, Vol. 24, No. 8, pp. 591–606, DOI:  https://doi.org/10.1002/tal.1201.CrossRefGoogle Scholar
  48. Saka, M. P. (2007). “Optimum design of steel frames using stochastic search techniques based on natural phenomena: A review.” Civil Engineering Computations: Tools and Techniques, B. H. V., Ed., Saxe-Coburgh Publications, Stirling, Scotland.Google Scholar
  49. Sarno, L. D. and Elnashai, A. S. (2009). “Bracing systems for seismic retrofitting of steel frames.” Journal of Constructional Steel Research, Vol. 65, No. 2, pp. 452–465, DOI:  https://doi.org/10.1016/j.jcsr.2008.02.013.CrossRefGoogle Scholar
  50. Shen, J., Seker, O., Akbas, B., Seker, P., Momenzadeh, S. B., and Faytarouni, M. (2017). “Seismic performance of concentrically braced frames with and without brace buckling.” Journal of Engineering Structures, Vol. 141, pp. 461–481, DOI:  https://doi.org/10.1016/j.engstruct.2017.03.043.CrossRefGoogle Scholar
  51. Wang, Y., Huang, J., Dong, W. S., Yan, J. C., Tian, C. H., Li, M., and Mo, W. T. (2013). “Two-stage based ensemble optimization framework for large-scale global optimization.” Journal of Operational Research, Vol. 228, No. 2, pp. 308–320, DOI:  https://doi.org/10.1016/j.ejor.2012.12.021.MathSciNetzbMATHCrossRefGoogle Scholar
  52. Yu, X., Ji, T., and Zheng, T. (2015). “Relationships between internal forces, bracing patterns and lateral stiffnesses of a simple frame.” Journal of Engineering Structures, Vol. 89, pp. 147–161, DOI:  https://doi.org/10.1016/j.engstruct.2015.01.030.CrossRefGoogle Scholar
  53. Zhang, C., Lin, Q., Gao, L., and Li, X. (2015). “Backtracking search algorithm with three constraint handling methods for constrained optimization problems.” Journal of Expert Systems with Applications, Vol. 42, No. 21, pp. 7831–7845, DOI:  https://doi.org/10.1016/j.eswa.2015.05.050.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers 2019

Authors and Affiliations

  1. 1.Civil Engineering group, Pardis CollegeIsfahan University of TechnologyIsfahanIran
  2. 2.Dept. of Civil EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations