KSCE Journal of Civil Engineering

, Volume 23, Issue 12, pp 5064–5075 | Cite as

A Novel Unsteady Fractal Derivative Creep Model for Soft Interlayers with Varying Water Contents

  • Wenmin Yao
  • Bin Hu
  • Hongbin ZhanEmail author
  • Chong Ma
  • Nenghao Zhao
Geotechnical Engineering


Creep properties of soft interlayers are key factors associated with the long-term stability of geological bodies. An experimental and theoretical study on the ring shear creep properties of soft interlayers collected from Esheng, Sichuan province, China are performed in this study. Ring shear creep tests of soft interlayers, which are remolded into over-consolidated samples having various water contents and the same initial dry density, are performed in laboratory, to analyze the creep deformation characteristics of samples in detail. The calculated long-term shear strength of samples is close to residual strength. By substituting the dashpot with a new unsteady fractal dashpot, a novel unsteady fractal derivative creep (UFDC) model, which can be defined in series with an improved Maxwell model and an improved viscoplastic model, is proposed based on theory of fractal derivative. The new model can efficiently explain the soft interlayers creep deformation. The results indicate that most model parameters are sensitive to the shear stress. However, at the accelerated creep stage, the fractional order of the second dashpot in the UFDC model has little effect on the fitting of experimental data.


soft interlayer ring shear creep test long-term shear strength fractal derivative creep model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The present work is supported by the National Key R&D Program of China (2018YFC1507200, 2017YFC1501304), the National Natural Science Foundation of China (No. 41672317, 41472261, 41772252, 41772259), the Natural Science Foundationof Hubei Province (CN) (2018CFB385), and the Research program for geological processes, resources and environment in the Yangtze River Basin (No. CUGCJ1701). The comments from the Editor and the two anonymous reviewers are constructive and very helpful for us to improve the quality of the manuscript. We sincerely thank them for their unselfish service.


  1. Arikoglu, A. (2014). “A new fractional derivative model for linearly viscoelastic materials and parameter identification via genetic algorithms.” Rheol. Acta., Vol. 53, No. 3, pp. 219–233, DOI: Scholar
  2. Bhat, D. R., Bhandary, N. P., Yatabe, R. C., and Tiwari, R. C. (2011). “Residual-state creep test in modified torsional ring shear machine: Methods and implications.” Int. J. Geomate., Vol. 1, No. 1, pp. 39–43, DOI: Scholar
  3. Bhat, D. R., Bhandary, N. P., and Yatabe, R. (2013). “Residual-state creep behavior of typical clayey soils.” Nat. Hazards, Vol. 69, No. 3, pp. 2161–2178, DOI: Scholar
  4. Cai, W., Chen, W., and Xu, W. X. (2016). “Characterizing the creep of viscoelastic materials by fractal derivative models.” Int. J. Nonlin. Mech., Vol. 87, pp. 58–63, DOI: Scholar
  5. Cai, W., Chen, W., and Xu, W. X. (2018). “The fractal derivative wave equation: Application to clinical amplitude/velocity reconstruction imagin.” J. Acoust. Sco. Am., Vol. 143, No. 3, pp. 1559–1566, DOI: Scholar
  6. Cao, P., Wen, Y. D., Wang, Y. X., Yuan, H. P., and Yuan, B. X. (2016). “Study on nonlinear damage creep constitutive model for high-stress soft rock.” Environ. Ear. Sci., Vol. 75, No. 10, pp. 900, DOI:
  7. Chen, W. (2006). “Time-space fabric underlying anomalous diffusion.” Chaos. Solitons. Fract., Vol. 28, No. 4, pp. 923–929, DOI: Scholar
  8. Chen, W., Sun, H. G., and Li, X. C. (2010a). Fractional derivative modeling in mechanics and engineering. Science Press, Beijing, China (in Chinese).Google Scholar
  9. Chen, W., Sun, H. G., Zhang, X. D., and Korošak, D. (2010b). “Anomalous diffusion modeling by fractal and fractional derivatives.” Comput. Math. Appl., Vol. 59, No. 5, pp. 1754–1758, DOI: Scholar
  10. Chen, W., Zhang, X. D., and Korošak, D. (2010c). “Investigation on fractional and fractal derivative relaxation-oscillation models.” Int. J. Nonlin. Sci. Num., Vol. 11, No. 1, pp. 3–10, DOI: Scholar
  11. Chen, X. P. and Liu, D. (2014). “Residual strength of slip zone soils.” Landslides, Vol. 11, No. 2, pp. 305–314, DOI: Scholar
  12. Di Maio, C., Scaringi, G., and Vassallo, R. (2015). “Residual strength and creep behaviour on the slip surface of specimens of a landslide in marine origin clay shales: Influence of pore fluid composition.” Landslides, Vol. 12, No. 4, pp. 657–667, DOI: Scholar
  13. Fabre, G. and Pellet, F. (2006). “Creep and time-dependent damage in argillaceous rocks.” Int. J. Rock Mech. Min., Vol. 43, No. 6, pp. 950–960, DOI: Scholar
  14. Feng, Z., Bin, L., Cai, Q. P., and Cao, J. W. (2016). “Initiation mechanism of the Jiweishan landslide in Chongqing, Southwestern China.” Environ. Eng. Geosci., Vol. 22, No. 4, pp. 341–351, DOI: Scholar
  15. Grimstad, G., Karstunen, M., Jostad, H. P., Sivasithamparam, N., Mehli, M., Zwanenburg, C., Haan, E. D., Amiri, S. A. G., Boumezerane, D., Kadivar, M., Ashrafi, M. A. H., and Rønningen J. A. (2017). “Creep of geomaterials–some finding from the EU project creep.” Eur. J. Environ. Civ. En., pp. 1–16, DOI: Scholar
  16. He, Z. L., Zhu, Z. D., Ni, X. H., and Li, Z. (2017). “Shear creep tests and creep constitutive model of marble with structural plane.” Eur. J. Environ. Civ. En., pp. 1–19, DOI: Scholar
  17. Hong, Y., Sun, T., Luan, M. T., Zheng, X. Y., and Wang, F. W. (2009). “Development and application of geotechnical ring shear apparatus: An overview.” Chin. J. Rock Soil Mech. Vol. 30, No. 3, pp. 628–634, (in Chinese), DOI: Scholar
  18. Jostad, H. P. and Yannie, J. (2017). “A procedure for determining long-term creep rates of soft clays by triaxial testing.” Eur. J. Environ. Civ. En., pp. 1–16, DOI: Scholar
  19. Kang, J. H., Zhou, F. B., Liu, C., and Liu, Y. K. (2015). “A fractional nonlinear creep model for coal considering damage effect and experimental validation.” Int. J. Nonlin. Mech., Vol. 76, pp. 20–28, DOI: Scholar
  20. Ladanyi, B. and Melouki, M. (1991). “Determination of creep properties of frozen soils by means of the borehole stress relaxation test.” Can. Geotech. J., Vol. 30, No. 1, pp. 170–186, DOI: Scholar
  21. Lai, X. L., Wang, S. M., Ye, W. M., and Cui, Y. J. (2014). “Experimental investigation on the creep behavior of an unsaturated clay.” Can. Geotech. J., Vol. 51, No. 6, pp. 621–628, DOI: Scholar
  22. Leoni, M., Karstunen, M., and Vermeer, P. (2008). “Anisotropic creep model for soft soils.” Géotechnique, Vol. 58, No. 3, pp. 215–226, DOI: Scholar
  23. Li, J. Z., Peng, F. L., and Xu, L. S. (2009). “One-dimensional viscous behavior of clay and its constitutive modeling.” Int. J. Geomech., Vol. 9, No. 2, pp. 43–51, DOI: Scholar
  24. Liang, Y. J., Ye, A. Q., Chen, W., Rodolfo, G. G., Luis, C., Thomas, H. M., and Richard, L. M. (2016). “A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging.” Commun. Nonlinear. Sci., Vol. 39, pp. 529–537, DOI: Scholar
  25. Lu, Y. L. and Wang, L. G. (2017). “Effect of water and temperature on short-term and creep mechanical behaviors of coal measures mudstone.” Environ. Earth Sci., Vol. 76, No. 17, pp. 597, DOI:
  26. Ma, L. J., Liu, X. Y., Fang, Q., Xu, H. F., Xia, H. M., Li, E. B., Yang, S. G., and Li, W. P. (2013). “A new elasto-viscoplastic damage model combined with the generalized Hoek-Brown failure criterion for bedded rock salt and its application.” Chin. J. Rock Mech. Eng., V o l. 46, No. 1, pp. 53–66 (in Chinese), DOI: Scholar
  27. Ministry of Water Resources of the People’s Republic of China (1999). GB/T 50123-1999: Standard for soil test method. China Planning Press, Beijing, China, (in Chinese).Google Scholar
  28. Mishra, B. and Verma, P. (2015). “Uniaxial and triaxial single and multistage creep tests on coal-measure shale rocks.” Int. J. Coal Geol., Vol. 137, pp. 55–65, DOI: Scholar
  29. Nixon, J. F., and Lem, G. (2011). “Creep and strength testing of frozen saline fine-grained soils.” Can. Geotech. J., Vol. 21, No. 3, pp. 518–529, DOI: Scholar
  30. Ovanesova, A. V. and Suarez, L. E. (2004). “Application of wavelet trans-forms to damage detection in frame structure.” Eng. Struct., Vol. 26, No. 1, pp. 39–49, DOI: Scholar
  31. Pusch, R., Zhang, L., Adey, R., and Kasbohm, J. (2010). “Rheology of an artificial smectitic clay.” Appl. Clay Sci., Vol. 47, No.. 1–2, pp. 120–126, DOI: Scholar
  32. Schmidtke, R. H. and Lajtai, E. Z. (1985). “The long-term strength of Lac du Bonnet granite.” Int. J. Rock Mech. Min., Vol. 22, No. 6, pp. 461–465, DOI: Scholar
  33. Shen, M. R., Chen, H. J., and Zhang, Q. Z. (2012). “Method for determining long-term strength of discontinuity using shear creep test.” Chin. J. Rock Mech. Eng., Vol. 31, No. 1, pp. 1–7 (in Chinese), DOI: Scholar
  34. Skempton, A. W. (1985). “Residual strength of clays in landslides, folded strata and the laboratory.” Geotechnique, Vol. 35, No. 1, pp. 3–18, DOI: Scholar
  35. Sun, H. G., Meerschaert, M. M., Zhang, Y., Zhu, J., and Chen, W. (2013). “A fractal Richards’ equation to capture the non-Boltzmann scaling of water transport in unsaturated media.” Adv. Water. Resour., Vol. 52, No. 4, pp. 292–295, DOI: Scholar
  36. Sun, J. (2007). “Rock rheological mechanics and its advance in engineering applications.” Chin. J. Rock Mech. Eng., Vol. 26, No. 6, pp. 1081–1106 (in Chinese), DOI: Scholar
  37. Tan, T. K. and Kang, W. F. (1980). “Locked in stresses, creep and dilatancy of rocks constitutive equation.” Rock Mech., Vol. 13, No. 1, pp. 5–22, DOI: Scholar
  38. Tang, H. M., Li, C. D., Hu, X. L., Su, A. J., Wang, L. Q., Wu, Y. P., Criss, R. E., Xiong, C. R., and Li, Y. A. (2015). “Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring.” Landslides, Vol. 12, No. 3, pp. 511–521, DOI: Scholar
  39. Tika, T. E. and Hutchinson, J. N. (1999). “Ring shear tests on soil from the vaiont landslide slip surface.” Géotechnique, Vol. 49, No. 1, pp. 59–74, DOI: Scholar
  40. Wang, G. J. (2004). “A new constitutive creep-damage model for salt rock and its characteristics.” Int. J. Rock Mech. Min., Vol. 41, pp. 61–67, DOI: Scholar
  41. Wang, S., Xiang, W., Cui, D. S., Yang, J., and Huang, X. (2012). “Study of residual strength of slide zone soil under different ring-shear tests.” Chin. J. Rock Mech. Eng., Vol. 33, No. 10, pp. 2967–2972 (in Chinese), DOI: Scholar
  42. Wang, X. G., Hu, B., Tang, H. M., Hu, X. L., Wang, J. D., and Huang, L. (2016). “A constitutive model of granite shear creep under moisture.” J. Earth Sci-China, Vol. 27, No. 4, pp. 677–685, DOI: Scholar
  43. Wang, S., Wu, W., Wang, J. E., Cui, D. S., and Xiang, W. (2018a). “Residual-state creep of clastic soil in a reactivated slow-moving landslide in the Three Gorges Reservoir Region, China.” Landslides, Vol. 15, No. 12, pp. 1–10, DOI: Scholar
  44. Wang, X. G., Yin, Y. P., Wang, J. D., Lian, B. Q., Qiu, H. J., and Gu, T. F. (2018b). “A nonstationary parameter model for the sandstone creep tests.” Landslides, Vol. 15, No. 7, pp. 1377–1389, DOI: Scholar
  45. Wen, B. P., Aydin, A., Duzgoren- Aydin, N. S., Li, Y. R., Chen, H. Y., and Xiao, S. D. (2007). “Residual strength of slip zones of large landslide in the Three Gorges area, China.” Eng. Geol., Vol. 93, No.. 3–4, pp. 82–98, DOI: Scholar
  46. Wu, F., Liu, J. F., and Wang, J. (2015). “An improved Maxwell creep model for rock based on variable-order fractional derivatives.” Environ. Ear. Sci., Vol. 73, No. 11, pp. 6965–6971, DOI: Scholar
  47. Xiong, L. X., Li, T. B., and Yang, L. D. (2014). “Biaxial compression creep test on green-schist considering the effects of water content and anisotropy.” KSCE J. Civ. Eng., Vol. 18, No. 1, pp. 103–112, DOI: Scholar
  48. Xu, H. Y. and Jiang, X. Y. (2017). “Creep constitutive models for viscoelastic materials based on fractional derivatives.” Comput. Math. Appl., Vol. 73, No. 6, pp. 1377–1384, DOI: Scholar
  49. Xu, T., Tang, C. A., and Zhao, J. (2012). “Modeling of rheological deformation of inhomogeneous rock and associated time-dependent response of tunnels.” Int. J. Geomech., Vol. 12, No. 2, pp. 147–159, DOI: Scholar
  50. Xu, G., Wu, W., and Qi, J. (2017). “A triaxial creep model for frozen soil based on hypoplasticity.” Eur. J. Environ. Civ. En., pp. 1–12, DOI: Scholar
  51. Yin, J. H. (2015). “Fundamental issues of elastic viscoplastic modeling of the time-dependent stress–strain behavior of geomaterials.” Int. J. Geomech., Vol. 36, No. 3, p. A4015002, DOI:
  52. Yin, Z. Y., Xu, Q., and Yu, C. (2012). “Elastic-viscoplastic modeling for natural soft clays considering nonlinear creep.” Int. J. Geomech., Vol. 15, No. 5, p. A6014001, DOI:
  53. Yu, H. C., Liu, H. D., Huang, Z. Q., and Shi, G. C. (2017). “Experimental study on time-dependent behavior of silty mudstone from the Three Gorges Reservoir Area, China.” KSCE J. Civ. Eng., Vol. 21, No. 3, pp. 715–724, DOI: Scholar
  54. Zhang, Q. Z., Shen, M. R., and Ding, W. Q. (2012). “Study of mechanical properties and long-term strength of Jinping green schist.” Chin. J. Rock Mech. Eng., Vol. 31, No. 8, pp. 1642–1649 (in Chinese), DOI: Scholar
  55. Zhang, B. Y., Chen, T., Peng, C., Qian, X. X., and Jie, Y. X. (2017) “Experimental study on loading-creep coupling effect in rockfil material.” Int. J. Geomech., Vol. 17, No. 9, p. 04017059, DOI
  56. Zhou, H. W., Wang, C. P., and Han, B. B. (2011). “A creep constitutive model for salt rock based on fractional derivatives.” Int. J. Rock Mech. Min., Vol. 48, No. 1, pp. 116–121, DOI: Scholar

Copyright information

© Korean Society of Civil Engineers 2019

Authors and Affiliations

  1. 1.Faculty of EngineeringChina University of GeosciencesWuhanChina
  2. 2.School of Resources and Environmental EngineeringWuhan University of Science and TechnologyWuhanChina
  3. 3.Dept. of Geology and GeophysicsTexas A&M UniversityCollege StationUSA
  4. 4.School of Mathematics and PhysicsChina University of GeosciencesWuhanChina

Personalised recommendations