Advertisement

A New Genetic Algorithm-based Topology Optimization Method of Tensegrity Tori

  • Shuo Ma
  • Xing-Fei YuanEmail author
  • Sheng-Da Xie
Structural Engineering
  • 3 Downloads

Abstract

This study mainly focuses on a new Genetic Algorithm (GA)-based topology optimization method of tensegrity tori with the ring stiffness set as the optimization objective. To do the structural analysis of self-equilibrated tensegrity tori, a modified stiffness matrix based form-finding method is introduced. A form finding procedure is adopted to generate new tensegrity tori in constant mass with only topology and rest length given. An innovative encoding scheme in GA is proposed to represent tensegrity tori with new sets of topology, prestress, and configuration. Numerical examples demonstrate that the proposed method is efficient in the topology optimization of tensegrity tori with high ring stiffness.

Keywords

topology optimization tensegrity tori form-finding genetic algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ehara, S. and Kanno, Y. (2010). “Topology design of tensegrity structures via mixed integer programming.” International Journal of Vol.ds and Structures, Vol. 47, No. 5, pp. 571–579, DOI:  https://doi.org/10.1016/j.ijsolstr.2009.10.020.zbMATHGoogle Scholar
  2. Faroughi, S., Kamran, M. A., and Lee, J. (2014). “A genetic algorithm approach for 2-D Tensegrity form finding.” Advances in Structural Engineering, Vol. 17, No. 11, DOI:  https://doi.org/10.1260/1369-4332.17.11.1669.Google Scholar
  3. Fraternali, F., De Chiara, E., and Skelton, R. E. (2015). “On the use of tensegrity structures for kinetic solar facades of smart buildings.” Smart Materials and Structures, Vol. 24, No. 10, p. 105032, DOI:  https://doi.org/10.1088/0964-1726/24/10/105032.Google Scholar
  4. Gan, B. S., Zhang, J., Nguyen, D. K., and Nouchi, E. (2015). “Nodebased genetic form-finding of irregular tensegrity structures.” Computers & Structures, Vol. 159, No. C, pp. 61–73, DOI:  https://doi.org/10.1016/j.compstruc.2015.07.003.CrossRefGoogle Scholar
  5. Goldberg, D. E. (1989). “Genetic algorithms in search.” Optimization and Machine Learning, Vol. xiii, No. 7, pp. 2104–2116.Google Scholar
  6. Guest, S. (2006). “The stiffness of prestressed frameworks: A unifying approach.” International Journal of Vol.ds & Structures, Vol. 43, No. 3, pp. 842–854, DOI:  https://doi.org/10.1016/j.ijsolstr.2005.03.008.zbMATHGoogle Scholar
  7. Guest, S. D. (2011). “The stiffness of tensegrity structures.” Ima Journal of Applied Mathematics, Vol. 76, No. 1, pp. 57–66, DOI:  https://doi.org/10.1093/imamat/hxq065..MathSciNetCrossRefzbMATHGoogle Scholar
  8. Ingber, D. E. (2003). “Tensegrity I. Cell structure and hierarchical systems biology.” Journal of Cell Science, Vol. 116, No. Pt 7, pp. 1157–1173, DOI:  https://doi.org/10.1093/imamat/hxq06510.1242/jcs.00359.Google Scholar
  9. Kawaguchi, M., Tatemichi, I., and Chen, P. S. (1999). “Optimum shapes of a cable dome structure.” Engineering Structures, Vol. 21, No. 8, pp. 719–725, DOI:  https://doi.org/10.1016/s0141-0296(98)00026-1.CrossRefGoogle Scholar
  10. Lee, S. and Lee, J. (2014). “Form-finding of tensegrity structures with arbitrary strut and cable members.” International Journal of Mechanical Sciences, Vol. 85, No. 8, pp. 55–62, DOI:  https://doi.org/10.1016/j.ijmecsci.2014.04.027.CrossRefGoogle Scholar
  11. Lee, S. and Lee, J. (2016). “A novel method for topology design of tensegrity structures.” Composite Structures, Vol. 152, pp. 11–19, DOI:  https://doi.org/10.1016/j.compstruct.2016.05.009.CrossRefGoogle Scholar
  12. Lu, J. Y., Dong, X., Zhao, X. L., Wu, X. L., and Shu, G. P. (2016). “Formfinding analysis for a new type of cable-strut tensile structures generated by semi-regular tensegrity.” Advances in Structural Engineering, Vol. 20, No. 5. DOI: 10.1177/1369433216661335.Google Scholar
  13. Nagase, K. and Skelton, R. E. (2014). “Double-helix tensegrity structures.” Aiaa Journal, Vol. 53, No. 4, pp. 847–862, DOI:  https://doi.org/10.2514/1.J053264.CrossRefGoogle Scholar
  14. Nocedal, J. and Wright, S. J. (1999). Numerical Optimization: Springer.CrossRefzbMATHGoogle Scholar
  15. Paul, C., Lipson, H., and Cuevas, F. J. V. (2005). “Evolutionary formfinding of tensegrity structures.” Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, ACM, Washington, DC, USA, pp. 3–10.Google Scholar
  16. Pei, Z. and Jian, F. (2013). “Stability criterion and stiffness analysis of tensegrity structures.” China Civil Engineering Journal, No. 10, pp. 48–57.Google Scholar
  17. Skelton, R. E. and De Oliveira, M. C. (2009). Tensegrity systems, Springer, New York, NY, USA, Vol. 1.zbMATHGoogle Scholar
  18. Skelton, R. E., Fraternali, F., Carpentieri, G., and Micheletti, A. (2014). “Minimum mass design of tensegrity bridges with parametric architecture and multiscale complexity.” Mechanics Research Communications, Vol. 58, pp. 124–132. DOI: 10.1016/j.mechrescom.2013.10.017.CrossRefGoogle Scholar
  19. Smyth, G. K. (1997). Optimization and nonlinear equations, John Wiley & Sons, Ltd., Chichester, England, UK.Google Scholar
  20. Tibert, A. G. and Pellegrino, S. (2002). “Deployable tensegrity reflectors for small satellites.” Journal of Spacecraft & Rockets, Vol. 39, No. 5, pp. 701–709, DOI:  https://doi.org/10.2514/2.3867.CrossRefGoogle Scholar
  21. Xu, X., Li, S., and Luo, Y. (2017). “Form-finding of a new kind of tensegrity tori using overlapping modules.” Mechanics Research Communications, Vol. 84, pp. 1–7. DOI: 10.1016/j.mechrescom. 2017.05.011.CrossRefGoogle Scholar
  22. Xu, X., Wang, Y., and Luo, Y. (2016). “General approach for topologyfinding of tensegrity structures.” Journal of Structural Engineering, Vol. 142, No. 10, pp. 4016061. DOI: 10.1061/(asce)st.1943-541x. 0001532.CrossRefGoogle Scholar
  23. Yuan, X., Chen, L., and Dong, S. (2007). “Prestress design of cable domes with new forms.” International Journal of Vol.ds & Structures, Vol. 44, No. 9, pp. 2773–2782. DOI: 10.1016/j.ijsolstr.2006.08.026.zbMATHGoogle Scholar
  24. Yuan, X. F. and Dong, S. L. (2003). “Integral feasible prestress of cable domes.” Computers & Structures, Vol. 81, No. 21, pp. 2111–2119, DOI:  https://doi.org/10.1016/S0045-7949(03)00254-2.CrossRefGoogle Scholar
  25. Yuan, X., Peng, Z., Dong, S., and Zhao, B. (2008). “A new tensegrity module - “Torus”.” Advances in Structural Engineering, Vol. 11, No. 3, pp. 243–251, DOI:  https://doi.org/10.1260/136943308785082616.CrossRefGoogle Scholar
  26. Zhang, P. and Feng, J. (2017). “Initial prestress design and optimization of tensegrity systems based on symmetry and stiffness.” International Journal of Vol.ds & Structures, Vols. 106–107, pp. 68–90, DOI:  https://doi.org/10.1016/j.ijsolstr.2016.11.030.Google Scholar
  27. Zhang, L., Li, Y., Cao, Y., and Feng, X. (2014). “Stiffness matrix based form-finding method of tensegrity structures.” Engineering Structures, Vol. 58, pp. 36–48, DOI:  https://doi.org/10.1016/j.engstruct.2013.10.014.CrossRefGoogle Scholar
  28. Zhang, J. Y. and Ohsaki, M. (2006). “Adaptive force density method for form-finding problem of tensegrity structures.” International Journal of Vol.ds and Structures, Vol. 43, Nos. 18–19, pp. 5658–5673. DOI: 10.1016/j.ijsolstr.2005.10.011.CrossRefzbMATHGoogle Scholar
  29. Zhang, J. Y. and Ohsaki, M. (2007). “Stability conditions for tensegrity structures.” International Journal of Vol.ds & Structures, Vol. 44, Nos. 11–12, pp. 3875–3886, DOI:  https://doi.org/10.1016/j.ijsolstr.2006.10.027.MathSciNetCrossRefzbMATHGoogle Scholar
  30. Zhang, J. Y., Ohsaki, M., and Kanno, Y. (2006). “A direct approach to design of geometry and forces of tensegrity systems.” International Journal of Vol.ds and Structures, Vol. 43, Nos. 7–8, pp. 2260–2278, DOI:  https://doi.org/10.1016/j.ijsolstr.2005.04.044.CrossRefzbMATHGoogle Scholar

Copyright information

© Korean Society of Civil Engineers 2019

Authors and Affiliations

  1. 1.College of Civil Engineering and ArchitectureZhejiang UniversityHangzhouChina

Personalised recommendations