KSCE Journal of Civil Engineering

, Volume 23, Issue 4, pp 1501–1512 | Cite as

Predicting the Biomethanation Potential of Some Lignocellulosic Feedstocks using Linear Regression Models: The Effect of Pretreatment

  • Supachai Hirunsupachote
  • Orathai ChavalparitEmail author
Environmental Engineering


Lignocellulose is an important feedstock for bioenergy production via an anaerobic digestion pathway. To evaluate the biochemical methanation potential (BMP) of each biomass sample, linear regression equations have been developed. Herein the application of the linear correlation of cellulosic compositions and ultimate BMP to simplify a mathematic equation for further prediction was investigated. The study focused on the effect of a pretreatment operation on the prediction. The model hypothesized that the pretreatment process would change the ratio between easily digestible fraction (NDS), cellulose (Cel) and lignin (ADL), which changes methane production. The prediction equations provided R2 = 0.5897 and for non-pretreated biomass and BMP for biomass after pretreatment provided R2 = 0.7450. These showed clearly that NDS and Cel provided positive methane production and ADL was a retarding factor. Via the pretreatment process, the coefficient of NDS increased and during ADL decreased significantly, the calibrated coefficient can still be applied (p-value < 0.05). This equation is applicable for methane production from lignocellulosic biomass feedstock where shoreter time and lower cost for methane estimation in BMP assays will be promoted.


lignocellulosic biomass composition pretreatment methane prediction linear-regression BMP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., and Levin, D. B. (2011). “Biomass pretreatment: Fundamentals toward application.” Biotehnology Advances, Vol. 29, No. 6, pp. 675–685, DOI: 10.1016/j.biotechadv.2011.05.005.CrossRefGoogle Scholar
  2. APHA (2005). Standard methods for the examination of water and wastewater, American Public Health Association, Washington, D.C., USA.Google Scholar
  3. Bastone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., Sanders, W. T. M., Siegrist, H., and Vavilin V. A. (2002). “Anaerobic digestion model no. 1.” Water Science Technology, IWA Publishing, Vol. 45, No. 10, pp. 65–73.CrossRefGoogle Scholar
  4. Bhadra, A., Scharer, J. M., and Moo-Young, M. (1986). “Anaerobic digestion of native cellulosic wastes.” MIRCEN Journal of Applied Microbiology and Biotechnology, Vol. 2, No. 3, pp. 349–358.CrossRefGoogle Scholar
  5. Chaiyapong, P. and Chavalparit, O. (2015). “Enhancement of biogas potential from Acacia leaf waste using alkaline pre-treatment and co-digestion.” Journal of Material Cycles and Waste Management, Vol. 18, No. 3, pp. 427–436, DOI: 10.1007/s10163-016-0469-0.CrossRefGoogle Scholar
  6. Charapaka, N. (2011) Biogas Production from Grasses Using Single Stage Anaerobic Digestion System, Master Thesis, Chulalongkorn University, Bangkok, Thailand.Google Scholar
  7. Charoenwuttichai, C. (2012). Biogas production from pretreated palm fruit bunches and glycerol, MSc Thesis, Chulalongkorn University, Bangkok, Thailand.Google Scholar
  8. Chynoweth, D. P., Turick, C. E., Owens, J. M., Jerger, D. E., and Peck, M. W. (1993). “Biochemical methane potential of biomass and waste feedstocks.” Biomass and Bioenergy, Vol. 5, No. 1, pp. 95–111, DOI: 10.1016/0961-9534(93)90010-2.CrossRefGoogle Scholar
  9. DEDE (2013). Final report; Study and demonstration of biogas production from biomass, Department of Alternative Energy Development and Efficiency. Bangkok. Thailand.Google Scholar
  10. Den, W., Sharma, V. K., Lee, M., Nadadur, G., and Varma, R. S. (2018). “Lignocellulosic biomass transformations via greener oxidative prtreatment process: Access to energy and value-added chemicals.” Front Chem., Vol. 6, No. 141, pp. 1–23, DOI: 10.3389/fchem.2018.00141.Google Scholar
  11. Gunaseelan, V. N. (2007). “Regression models of ultimate yields of fruits and vegetable solid wastes, sorghum and napier grass on chemical composition.” Bioresource Technology, Vol. 98, No. 6, pp. 1270–1277, DOI: 10.1016/j.biortech.2006.05.014.CrossRefGoogle Scholar
  12. Gunaseelan, V. N. (2009). “Prediction ultimate methane yields of Jatropha Curcus and Morus Indica from their chemical composition.” Bioresource Technology, Vol. 100, No. 13, pp. 3426–3429, DOI: 10.1016/j.biortech.2009.02.005.CrossRefGoogle Scholar
  13. Hendriks, A. T. W. M. and Zeeman, G. (2009). “Pretreatments to enhance the digestibility of lignocellulosic biomass.” Bioresource Technology, Vol. 100, No. 1, pp. 10–18, DOI: 10.1016/j.biortech.2008.05.027.CrossRefGoogle Scholar
  14. Nurk, L., Bühle, L., and Wachendorf, M. (2016), “Degradation of fibre and non-fibre fractions during anaerobic digestion in silages of maize, sunflower and sorghum-sudangrass of different maturities.” Bioenerg. Res., Vol. 2016, No. 9, pp. 720–730, DOI: 10.1007/s12155-016-9717-3.CrossRefGoogle Scholar
  15. Moiser, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., and Ladisch, M. (2005). “Features of promising technologies for pretreatment of lignocellulosic biomass.” Bioresource Tehcnology, Vol. 96, No. 6, pp. 673–686, DOI: 10.1016/j.biortech.2004.06.025.CrossRefGoogle Scholar
  16. Monlau, F., Sambusiti, C., Barakat A., Guo, X. M., Latrille, E., Trably, E., Steyer, J. P., and Carretr, H. (2012). “Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials.” Environmental Science and Technology, Vol. 46, No. 21, pp. 12217–12225, DOI: 10.1021/es303132t.CrossRefGoogle Scholar
  17. Nielfa, A., Cano, R., and Fdz-Polanco, M. (2015). “Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge” Biotechnology Reports, Vol. 5, pp. 14–21, DOI: 10.1016/j.btre.2014.10.005.CrossRefGoogle Scholar
  18. Parveen, K., Barrett, D. M., Delwiche, M. J., and Stroeve, P. (2009). “Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production.” Industrial and Engineering Chemistry Research, Vol. 48, No. 8, pp. 3713–3729, DOI: 10.1021/ie801542g.CrossRefGoogle Scholar
  19. Sawatdeenarunat, C., Surendra, K. C., Takara, D., Oechsner, H., and Khanal, S. K. (2015). “Review Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities” Bioresource Technology, Vol. 178, pp. 178–186, DOI: 10.1016/j.biotech.2014.09.103.CrossRefGoogle Scholar
  20. Schievano, A., Pognani, M., D’Imporzano, G., and Adani, F. (2008). “Predicting anaerobic biogasification potential of ingestates and digestates of a full-scale biogas plant using chemical and biological parameters.” Bioresour. Technol., Vol. 99, No. 17, DOI: 10.1016/j.biortech.2008.03.030.Google Scholar
  21. Seidl, P. R. and Goulart, A. K. (2016). “Pretreatment process for lignocellulosic biomass conversion to biofuels and bioproducts.” Current Opinion in Green and Sustainable Chemistry, Vol. 2, pp. 48–53, DOI: 10.1016/j.cogsc.2016.09.003.CrossRefGoogle Scholar
  22. Shah, F. A., Mahmood, Q., Shah, M. M., Pervez, A., and Asad, S. A. (2014). “Microbial ecology of anaerobic digesters: The key players of anaerobiosis.” Scientific World Journal, Vol. 2014, No. 183752, DOI: 10.1155/2014/183752.Google Scholar
  23. Siddhu, M. A., Li, J., Zhang, J., Huang, Y., Wang, W., Chen, C., and Liu, G. (2016). “Improve the Anaerobic biodegradability by copretreatment of thermal alkali and steam explosion of lignocellulosic waste.” BioMed Research International, Vol. 2016, pp. 1–10, DOI: 10.1155/2016/2786598.CrossRefGoogle Scholar
  24. Tannil, A. (2010). Anaerobic co-digestion of pig manure, palm leaf and municipal solid waste in combined two stage reactor and in membrane reactor. MSc Thesis, Chulalongkorn University, Bangkok, Thailand.Google Scholar
  25. Tarvin, D. and Buswell, A. M. (1934). “The methane fermentation of organic acids and carbohydrates.” Journal of the American Chemical Society, Vol. 56, No. 8, pp. 1751–1755, DOI: 10.1021/ja01323a030.CrossRefGoogle Scholar
  26. Triolo, J. M., Sommer, S. G., Moller, H. B., Weisbjerg, M. R., and Jiang, X. Y. (2011). “A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential.” Bioresource Techlology, Vol. 102, No. 20, pp. 9395–9402, DOI: 10.1016/j.biortech.2011.07.026.CrossRefGoogle Scholar
  27. Van Soest, P. J. (1963). “Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin.” Journal of the Association of Official Analytical Chemistry, Vol. 46, pp. 829–835.Google Scholar
  28. Van Soest, P. J., Robertson, J. B., and Lewis, B. A. (1991). “Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition.” J. Dairy Sci., Vol. 74, No. 10, pp. 3583–3597, DOI: 10.3168/jds.S0022-0302(91)78551-2.CrossRefGoogle Scholar
  29. Wongvan, C. (2012). Biogas production from co-digestion of pretreated corn stalk and glyceral waste, MSc Thesis, Chulalongkorn University, Bangkok, Thailand.Google Scholar
  30. Zhang, Q., Tang, L., Zhang, J., Mao, Z., and Jiang, L. (2011). “Optimization of thermal dilute sulfuric acid pretreatment for enhancement of methane production from cassava residues.” Bioresource Technology, Vol. 12, No. 4, pp. 3958–3965, DOI: 10.1016/j.biortech.2010.12.031.CrossRefGoogle Scholar
  31. Zhang, C., Xiao, G., Peng, L., Su, H., and Tan, T. (2013). “The anaerobic codigestion of food waste and cattle manure.” Bioresource Technology, Vol. 129, pp. 170–176, DOI: 10.1016/j.biortech.2012.10.138.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers 2019

Authors and Affiliations

  1. 1.Dept. of Environmental EngineeringChulalongkorn UniversityBangkokThailand
  2. 2.Research Unit of Environmental Management and Sustainable IndustryChulalongkorn UniversityBangkokThailand

Personalised recommendations