Advertisement

Geometrically Non-linear Analysis of Elastic Structures by Petrov-Galerkin Natural Element Method

  • Hong-Woo Lee
  • Jin-Rae ChoEmail author
Structural Engineering
  • 7 Downloads

Abstract

This paper is concerned with the geometrically non-linear analysis of elastic structures using the natural element method, particularly a Petrov-Galerkin Natural Element Method (PG-NEM). The geometrically non-linear problem is linearized and formulated by the Taylor series expansion and the Total Lagrangian (TL) method. The Voronoi polygon-based Laplace Interpolation (LI) functions are used to approximate the displacement increments, while the Delaunay triangle-supported Constant-Strain (CS) basis functions are adopted for the expansion of the virtual displacement. The iterative computation is performed by the Newton-Raphson method, and a set of Delaunay triangles serves as a background cell for the traditional Gauss integration rule-based numerical integration. The proposed PG-NEM is illustrated through the numerical experiments, and its numerical accuracy is compared with MSC/Marc, CS-FEM and BG-NEM.

Keywords

geometrically non-linear problem PG-NEM LI function constant-strain basis function linearized total Lagrangian formulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfaro, I., Bel, D., Cueto, E., Doblare, M., and Chinesta, F. (2006). “Three–dimensional simulation of aluminum extrusion by the α–shape based natural element method.” Computer Methods in Applied Mechanics and Engineering, vol. 195, Nos. 33–36, pp. 4269–4286, DOI: 10.1016/j.cma.2005.08.006.CrossRefzbMATHGoogle Scholar
  2. Atluri, S. N. and Zhu, T. (1998). “A new Meshless Local Petrov–Galerkin (MLPG) Approach in computational mechanics.” Computational Mechanics, vol. 22, no. 2, pp. 117–127, DOI: 10.1007/s004660050.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Belytschko, T., Lu, Y. Y., and Gu, L. (1994). “Element–free Galerkin methods.” International Journal for Numerical Methods in Engineering, vol. 37, no. 2, pp. 229–256, DOI: 10.1002/nme.1620370205.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Braun, J. and Sambridge, M. (1995). “A numerical method for solving differential equations on highly irregular evolving grids.” Nature, vol. 376, no. 6542, pp. 655–660, DOI: 10.1038/376655a0.CrossRefGoogle Scholar
  5. Chinesta, F., Cescotto, S., Cueto, E., and Lorong, P. (2013). Natural element method for the simulation of structures and processes, John Wiley & Sons, NJ, USA.CrossRefzbMATHGoogle Scholar
  6. Cho, J. R. and Lee, H. W. (2006). “A Petrov–Galerkin natural element method securing the numerical integration accuracy.” Journal of Mechanical Science and Technology, vol. 20, no. 1, pp. 94–109, DOI: 10.1007/BF0291620.CrossRefGoogle Scholar
  7. Cho, J. R., Lee, H. W., and Yoo, W. S. (2014). “Natural element approximation of Reissner–Mindlin plate for locking–free numerical analysis of plate–like thin elastic structures.” Computer Methods in Applied Mechanics and Engineering, vol. 256, pp. 17–28, DOI: 10.1016/j.cma.2012.12.015.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Doyle, J. F. (2001). Non–linear analysis of thin–walled structures: Statics, dynamics and stability, Springer–Verlay, NY, USA.CrossRefzbMATHGoogle Scholar
  9. Duarte, C. A. and Oden, J. T. (1996). “An h–p adaptive method using clouds.” Computer Methods in Applied Mechanics and Engineering, vol. 139, Nos. 1–4, pp. 237–262, DOI: 10.1016/S0045–7825(96)01085–7.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Holzapfel, G. A. (2000). Non–linear solid mechanics: A continuum approach for engineering, John Wiley & Sons, Chichester, England.zbMATHGoogle Scholar
  11. Krongauz, Y. and Belytschko, T. (1996). “Enforcement of essential boundary conditions in meshless approximations using finite elements,” Computer Methods in Applied Mechanics and Engineering, vol. 131, Nos. 1–2, pp. 133–145, DOI: 10.1016/0045–7825(95)00954–X.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Liu, W. K., Jun, S., and Zhang, Y. F. (1995). “Reproducing kernel particle methods.” International Journal for Numerical Methods in Fluids, vol. 20, Nos. 8–9, pp. 1081–1106, DOI: 10.1002/fld.1650200824.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Logan, D. L. (2001). A first course in the finite element method, Cengage Learning, Stanford, CA, USA.Google Scholar
  14. Marechal, Y. and Ramdane, B. (2013). “Natural element method applied to electromagnetic problems.” IEEE Transactions of Magnetics, vol. 49, no. 5, pp. 1714–1716, DOI: 10.1109/TMAG.2013.2242875.CrossRefGoogle Scholar
  15. Nie, Z. F., Zhou, S. J., Han, R. J., Xiao, L. J., and Wang, K. (2012). “C1 natural element method for strain gradient linear elasticity and its application to miscrostructures.” Acta Mechanical Sinica, vol. 28, no. 1, pp. 91–103, DOI: 10.1007/s1109–011–0540–y.CrossRefzbMATHGoogle Scholar
  16. Strang, G. and Fix, G. J. (1973). An analysis of the finite element method, Prentice–Hall, NJ, USA.zbMATHGoogle Scholar
  17. Sukumar, N. and Moran, B. (1999). “C1 natural neighbor interpolant for partial differential equations.” Numerical Methods in Partial Differential Eqations, vol. 15, no. 4, pp. 417–447, DOI: 10.1002/(SICI) 1098–2426(199907)15:4<417::AID–NUM2>3.0.CO;2–S.CrossRefzbMATHGoogle Scholar
  18. Teyssedre, H. and Gilormini, P. (2013). “Extension of natural element method to surface tension and wettability for the simulation of polymer flows at the micro and nano scales.” Journal of Non–Newtonian Fliud Mechanics, vol. 200, pp. 9–16, DOI: 10.1016/j.jnnfm.2012.10.003.CrossRefGoogle Scholar
  19. Wang, K., Zhou, S., and Shan, G. (2005). “The natural neighbour Petrov–Galerkin method for elasto–statics.” International Journal for Numerical Methods in Engineering, vol. 63, no. 8, pp. 1126–1145, DOI: 10.1002/nme.1304.CrossRefzbMATHGoogle Scholar
  20. Zhang, Y., Yi, H. L., and Tan, H. P. (2013). “Least–square natural element method for radiative heat transfer in graded index medium with semitransparent surfaces.” International Journal of Heat and Mass Transfer, vol. 66, pp. 349–354, DOI: 10.1016/j.ijheatmasstransfer. 2013.07.034.CrossRefGoogle Scholar
  21. Zhou, S., Liu, Y., and Chen, S. (2012). “Upper bound limit analysis of plates utilizing the C1 natural element method.” Computational Mechanics, vol. 50, no. 5, pp. 543–561, DOI: 10.1007/s00466–012–0688–8.MathSciNetCrossRefzbMATHGoogle Scholar
  22. Zu, T. and Atluri, S. N. (1998). “A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element Galerkin method.” Computational Mechanics, vol. 21, no. 3, pp. 211–222, DOI: 10.1007/s004660050296.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Technical Research LaboratoriesPOSCOGwangyangKorea
  2. 2.Dept. of Naval Architecture and Ocean EngineeringHongik UniversitySejongKorea

Personalised recommendations