Advertisement

Ship Twin-propeller Jet Model used to Predict the Initial Velocity and Velocity Distribution within Diffusing Jet

  • Jinxin Jiang
  • Wei-Haur Lam
  • Yonggang Cui
  • Tianming Zhang
  • Chong Sun
  • Jianhua Guo
  • Yanbo Ma
  • Shuguang Wang
  • Gerard Hamill
Hydraulic Engineering
  • 5 Downloads

Abstract

The current research proposed the theoretical model for ship twin-propeller jet based on the axial momentum theory and Gaussian normal distribution. The twin-propeller jet model is compared to the more matured single propeller jet model with good agreement. Computational Fluid Dynamics (CFD) method is used to acquire the velocity distribution within the twin-propeller jet for understanding of flow characteristics and validation purposes. Efflux velocity is the maximum velocity within the entire jet with strong influences by the geometrical profiles of the blades. Twin-propeller jet model showed four-peaked profile at the initial plane downstream to the propeller compared to the two-peaked profile from a single-propeller. The four-peaked profile merges to be twopeaked velocity profile and then one-peaked profile due to the fluid mixing. Entrainment occurs between the ambient still water outside and the rotating flow within jet due to the high velocity gradient. The research proposes a twin-propeller jet theory with a serial of equations enabling the predictions of velocity magnitude within the jet.

Keywords

ship twin-propeller jet axial momentum theory CFD velocity distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertson, M. L., Dai, Y. B., Jensen, R. A., and Rouse, H. (1950). “Diffusion of submerged jets.” American Society of Civil Engineers, Vol. 115, No. 11, pp. 639–664.Google Scholar
  2. ANSYS Fluent (2013). ANSYS Fluent user’s guide 15.0, ANSYS Inc., Canonsburg, Pennsylvania, USA.Google Scholar
  3. ANSYS ICEM (2013). ANSYS ICEM CFD user’s manual 15.0. ANSYS Inc., Canonsburg, Pennsylvania, USA.Google Scholar
  4. Berger, W., Felkel, K., Hager, M., Oebius, H., and Schale, E. (1981). “Courant provoque parles bateaux protection des berges et solution pour eviter l’erosion du lit duhaut rhin.” Proceedings of 25th Congress P.I.A.N.C., Section 1–1. Edinburgh, Scotland.Google Scholar
  5. Blaauw, H. G. and van de Kaa, E. J. (1978). Erosion of bottom and sloping banks caused by the screw race of manoeuvring ships, Delft Hydraulics Laboratory, Delft, Netherlands, Publication No. 202, pp. 1–12.Google Scholar
  6. Fuehrer, M. and Romisch, K. (1977). “Effects of modern ship traffic on islands and ocean waterways and their structures.” Proceedings of 24th Congress P.I.A.N.C., Sections 1–3, Leningrad, Russia.Google Scholar
  7. Hamill, G. A. (1987). Characteristics of the screw wash of a manoeuvring ship and the resultant bed scour, PhD Thesis, Queen’s University of Belfast, UK.Google Scholar
  8. Hamill, G. A. and Kee, C. (2016). “Predicting axial velocity profiles within a diffusing marine propeller jet.” Ocean Engineering, Vol. 124, pp. 104–112, DOI: 10.1016/j.oceaneng.2016.07.061.CrossRefGoogle Scholar
  9. Hamill, G. A., Kee, C., and Ryan, D. (2015). “3D efflux velocity characteristics of marine propeller jets.” Proceedings of the ICE -Maritime Engineering, Vol. 168, No. 2, pp. 62–75, DOI: 10.1680/maen.14.00019.CrossRefGoogle Scholar
  10. Johnston, H. T., Hamill, G. A., Wilson, P. R., and Ryan, D. (2013). “Influence of a boundary on the development of a propeller wash.” Ocean Engineering, Vol. 61, pp. 50–55, DOI: 10.1016/j.oceaneng.2012.12.033.CrossRefGoogle Scholar
  11. Lam, W. (2008). Simulations of a ship's propeller jet, PhD Thesis, Queen’s University of Belfast, UK.Google Scholar
  12. Lam, W., Hamill, G. A., and Robinson, D. J. (2013). “Initial wash profiles from a ship propeller using CFD method.” Ocean Engineering, Vol. 72, pp. 257–266, DOI: 10.1016/j.oceaneng.2013.07.010.CrossRefGoogle Scholar
  13. Lam, W., Hamill, G. A., Robinson, D., Raghunathan, S., and Song, Y. (2012). “Analysis of the 3D zone of flow establishment from a ship propeller.” KSCE Journal of Civil Engineering, KSCE, Vol. 16, No. 4, pp. 465–477, DOI: 10.1007/s12205-012-1256-7.CrossRefGoogle Scholar
  14. Lam, W., Hamill, G. A., Song, Y. C., Robinson, D. J., and Raghunathan, S. (2011). “Experimental investigation of the decay from a ship's propeller.” China Ocean Engineering, Vol. 25, No. 2, pp. 265–284, DOI: 10.1007/s13344-011-0050-5.CrossRefGoogle Scholar
  15. Lee, J. H. W. and Chu, V. H. (2003). Turbulent jets and plumes: A Lagrangian approach, Kluwer Academic, Netherlands, DOI: 10.1007/978-1-4615-0407-8.CrossRefGoogle Scholar
  16. Mujal-Colilles, A., Gironella, X., Crespo, A. J. C., and Sanchez-Arcilla, A. (2017). “Study of the bed velocity induced by twin propellers.” Journal of Waterway Port Coastal and Ocean Engineering, Vol. 143, No. 5, 04017013–8, DOI: 10.1061/(ASCE)WW.1943-5460.0000382.CrossRefGoogle Scholar
  17. Prosser, M. (1986). “Propeller induced scour.” Tech. Rep., BHRA Project RP A01415, The Fluid Engineering Centre, Cranfield, England.Google Scholar
  18. Solidworks (2016). Solidworks tutorials 2016, Dassault Systèmes Solidworks Corporation, Concord, Massachusettss, USA.Google Scholar
  19. Stewart, D. P. J. (1992). Characteristics of a ship's screw wash and the influence of quay wall proximity, PhD Thesis, Queen’s University of Belfast, UK.Google Scholar
  20. Verhey, H. J. (1983). “The stability of bottom and banks subjected to velocities in the propeller jet behind ships.” 8th International Harbour Congness, Antwerp, Belgium.Google Scholar
  21. Versteegs, H. K. and Malalasekera, W. (2007). An introduction to computational fluid dynamics the finite volume method, Second Edition, Prentice Hall, Essex, England.Google Scholar
  22. Wang, H. and Law, A. W. K. (2002). “Second-order integral model for a round turbulent buoyant jet.” Journal of Fluid Mechanics, Vol. 459, pp. 397–428, DOI: 10.1017/S0022112002008157.MathSciNetzbMATHGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jinxin Jiang
    • 1
  • Wei-Haur Lam
    • 1
  • Yonggang Cui
    • 1
  • Tianming Zhang
    • 1
  • Chong Sun
    • 1
  • Jianhua Guo
    • 1
  • Yanbo Ma
    • 1
  • Shuguang Wang
    • 1
  • Gerard Hamill
    • 2
  1. 1.State Key Laboratory of Hydraulic Engineering Simulation and SafetyTianjin UniversityTianjinChina
  2. 2.School of Natural and Built Environment, Architecture, Civil & Structural Engineering and PlanningQueen’s University Belfast, NorthernIrelandUK

Personalised recommendations