Advertisement

KSCE Journal of Civil Engineering

, Volume 23, Issue 12, pp 5226–5234 | Cite as

Prediction of Soil Hydraulic Conductivity at Saturation using Air Permeability at Any Individual Soil Water Content

  • Mehdi RahmatiEmail author
  • Mohammad Reza Neyshaboury
  • Panah Mohammadi
Water Resources and Hydrologic Engineering
  • 26 Downloads

Abstract

Several studies aimed at linking hydraulic conductivity at saturation (Kw,s) to air permeability (Ka(θw)) of soil at given water content (θw) since it can be measured more rapidly and nondestructively than Kw,s especially regarding some new in situ technologies for Ka(θw) measurement. Following this, the current research aimed to develop a semi-theoretical relation between Kw,s and Ka(θw) using measured data in 27 soil samples. The Ka(θw) was measured at 12 different θw contents between 1.5 to 1,500 kPa suctions. Applying these measured data, we proposed a semi-theoretical function to predict Kw,s using Ka(θw) as input variable. The results showed that the proposed function was able to predict Kw,s using Ka(θw) at any individual θw content with really high accuracy consisting of R2 = 0.986 and evaluating error (ER) of the 2% between measured and predicted Kw,s. However, the outcomes revealed that Ka(θw) measurement at lower θw contents resulted in greater accuracy for proposed model. The pertinent section of the article applied multivariate linear regression (MLR) to develop pedo-transfer functions (PTFs) to estimate the parameters of the proposed model. The results revealed that the developed PTFs had relatively greater accuracy and reliability showing average determination coefficient (R2) of 0.807 and 0.729 for training and test datasets, respectively. However, more detailed investigation with wide range of soil parameters are needed for more general PTFs development.

Keywords

air permeability pedo-transfer function modeling hydraulic conductivity at saturation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Authors gratefully thank Dr. Farhad Mazlum for comments on a draft of this article. We also would like to thank anonymous reviewers who helped a lot to improve the manuscript with their constructive comments.

References

  1. Arya, L. M., Leij, F. J., van Genuchten, M. T., and Shouse, P. J. (1999). ‘Scaling parameter to predict the soil water characteristic from particle-size distribution data.’ Soil Science Society of America Journal, Vol. 63, No. 3, pp. 510–519, DOI: 10.2136/sssajl999.03615995006300030013x.CrossRefGoogle Scholar
  2. Arya, L. M. and Paris, J. R., (1981). ‘A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data.’ Soil Science Society of America Journal, Vol. 45, No. 6, pp. 1023–1030, DOI: 10.2136/sssajl981.03615995004500060004xCrossRefGoogle Scholar
  3. Blackwell, P., Ringrose-Voase, A., Jayawardane, N., Olsson, K., McKenzie, D., and Mason, W. (1990). ‘The use of air-filled porosity and intrinsic permeability to air to characterize structure of macropore space and saturated hydraulic conductivity of clay soils.’ Journal of Soil Science, Vol. 41, No. 2, pp. 215–228, DOI: 10.1111/j.l365-2389.1990.tb00058.x.CrossRefGoogle Scholar
  4. Brooks, R. H. and Corey, A. T. (1966). ‘Properties of porous media affecting fluid flow.’ Journal of the Irrigation and Drainage Division, Vol. 92, No. 2, pp. 61–90.Google Scholar
  5. Campbell, G. S. (1974). ‘A simple method for determining unsaturated conductivity from moisture retention data.’ Soil Science, Vol. 117, No. 6, pp. 311–314.CrossRefGoogle Scholar
  6. Chief, K., Ferré, T., and Nijssen, B. (2008). ‘Correlation between air permeability and saturated hydraulic conductivity: Unburned and burned soils.’ Soil Science Society of America Journal, Vol. 72, No. 6, pp. 1501–1509, DOI: 10.2136/sssaj2006.0416.CrossRefGoogle Scholar
  7. Doussan, C. and Ruy, S. (2009). ‘Prediction of unsaturated soil hydraulic conductivity with electrical conductivity.’ Water Resources Research, Vol. 45, No. 10, DOI: 10.1029/2008WR007309.Google Scholar
  8. Fish, A. and Koppi, A. (1994). ‘The use of a simple field air permeameter as a rapid indicator of functional soil pore space.’ Geoderma, Vol. 63, Nos. 3–4, pp. 255–264, DOI: 10.1016/0016-7061(94)90067-1.CrossRefGoogle Scholar
  9. Flint, A. L. and Flint, L. E. (2002). ‘2.2 Particle density.’ Methods of Soil Analysis: Part 4 Physical Methods, Soil Science Society of America, Madison, WI, USA, pp. 229–240.Google Scholar
  10. Gee, G. W. and Or, D. (2002). ‘2.4 Particle-size analysis.’ Methods of Soil Analysis: Part 4 Physical Methods, Soil Science Society of America, Madison, WI, USA.Google Scholar
  11. Ghanbarian, B., Hunt, A. G, Ewing, R. P., and Skinner, T. E. (2014). ‘Theoretical relationship between saturated hydraulic conductivity and air permeability under dry conditions: Continuum percolation theory.’ Vadose Zone Journal, Vol. 13, No. 8, DOI: 10.2136/vzj2014.03.0029.Google Scholar
  12. Grossman, R. and Reinsch, T., (2002). ‘2.1 Bulk density and linear extensibility.’ Methods of Soil Analysis: Part 4 Physical Methods, Soil Science Society of America, Madison, WI, USA, pp. 201–228.Google Scholar
  13. Grover, B. L. (1955). ‘Simplified air permeameters for soil in place.’ Soil Science Society of America Journal, Vol. 19, No. 4, pp. 414–418, DOI: 10.2136/sssajl955.03615995001900040006x.CrossRefGoogle Scholar
  14. Hillel, D. (2003). Introduction to environmental soil physics, Elsevier, San Diego, CA, USA.Google Scholar
  15. Huang, M., Zettl, J. D., Barbour, S. L. and Pratt, D. (2016). ‘Characterizing the spatial variability of the hydraulic conductivity of reclamation soils using air permeability.’ Geoderma, Vol. 262, pp. 285–293, DOI:10.1016/j.geoderma.2015.08.014.CrossRefGoogle Scholar
  16. Iversen, B. V, Moldrup, P., Schjønning, P., and Loll, P. (2001). ‘Air and water permeability in differently textured soils at two measurement scales.’ Soil Science, Vol. 166, No. 10, pp. 643–659.CrossRefGoogle Scholar
  17. Janse, A. and Bolt, G. (1960). ‘The determination of air-permeability of soils.’ Netherlands Journal of Agricultural Science, Vol. 8, pp. 124–131.Google Scholar
  18. Kirkham, D. and Powers, W. L. (1972). Advanced soil physics, Wiley-Interscience, Hoboken, NJ, USA.Google Scholar
  19. Klute, A. and Dirksen, C. (1986). ‘Hydraulic conductivity and diffusivity: Laboratory methods.’ Methods of Soil Analysis: Part 1-Physical and Mineralogical Methods, Soil Science Society of America, Madison, WI, USA, pp. 687–734.Google Scholar
  20. Kosugi, K. I. (1996). ‘Lognormal distribution model for unsaturated soil hydraulic properties.’ Water Resources Research, Vol. 32, No. 9, pp. 2697–2703, DOI: 10.1029/96WR01776.CrossRefGoogle Scholar
  21. Latorre, B., Moret-Fernández, D., Lassabatere, L., Rahmati, M., López, M. V., Angulo-Jaramillo, R., Sorando, R., Comín, F., and Jiménez, J. J. (2018). ‘Influence of the ß parameter of the Haverkamp model on the transient soil water infiltration curve.’ Journal of Hydrology, Vol. 567, pp. 22–229, DOI: 10.1016/j.jhydrol.2018.07.006.Google Scholar
  22. Latorre, B., Peña, C., Lassabatere, L., Angulo-Jaramillo, R., and Moret-Fernández, D. (2015). ‘Estimate of soil hydraulic properties from disc infiltrometer three-dimensional infiltration curve. Numerical analysis and field application.’ Journal of Hydrology, Vol. 527, pp. 1–12, DOI: 10.1016/j.jhydrol.2015.04.015.CrossRefGoogle Scholar
  23. Lilly, A., Nemes, A., Rawls, W., and Pachepsky, Y. A. (2008). ‘Probabilistic approach to the identification of input variables to estimate hydraulic conductivity.’ Soil Science Society of America Journal, Vol. 72, No. 1, pp. 16–24, DOI: 10.2136/sssaj2006.0391.CrossRefGoogle Scholar
  24. Loll, P., Moldrup, P., Schjonning, P., and Riley, H. (1999). ‘Predicting saturated hydraulic conductivity from air permeability: Application in stochastic water infiltration modeling.’ Water Resources Research, Vol. 35, No. 8, pp. 2387–2400, DOI: 10.1029/1999WR900137.CrossRefGoogle Scholar
  25. Mahdian, M., Oskoee, R., Kamali, K., Angoshtari, H., and Kadkhodapoor, M. (2009). ‘Developing pedo transfer functions to predict infiltration rate in flood spreading stations of Iran.’ Research Journal of Environmental Sciences, Vol. 3, No. 6, pp. 697–704, DOI: 10.3923/rjes.2009.697.704.CrossRefGoogle Scholar
  26. Mallants, D., Mohanty, B. P., Vervoort, A., and Feyen, J. (1997). ‘Spatial analysis of saturated hydraulic conductivity in a soil with macropores.’ Soil Technology, Vol. 10, No. 2, pp. 115–131, DOI: 10.1016/S0933-3630(96)00093-1.CrossRefGoogle Scholar
  27. Masís-Meléndez, F., Deepagoda, T. C., de Jonge, L. W., Tuller, M., and Moldrup, P. (2014). ‘Gas diflùsion-derived tortuosity governs saturated hydraulic conductivity in sandy soils.’ Journal of Hydrology, Vol. 512, pp. 388–396, DOI: 10.1016/j.jhydrol.2014.02.063.CrossRefGoogle Scholar
  28. Moldrup, P., Poulsen, T., Schjonning, P., Olesen, T. and Yamaguchi, T., (1998). ‘Gas permeability in undisturbed soils: Measurements and predictive models.’ Soil Science, Vol. 163, No.3, pp. 180–189, DOI: 10.1097/00010694-199803000-00002.CrossRefGoogle Scholar
  29. Mualem, Y. (1976). ‘A new model for predicting the hydraulic conductivity ofunsaturated porous media.’ Water Resources Research, Vol. 12, No. 3, pp. 513–522, DOI: 10.1029/WR012i003p00513.CrossRefGoogle Scholar
  30. Neyshabouri, M. R, Rahmati, M., Doussan, C., and Behroozinezhad, B. (2013). ‘Simplified estimation of unsaturated soil hydraulic conductivity using bulk electrical conductivity and particle size distribution.’ Soil Research, Vol. 51, No. 1, pp. 23–33, DOI: 10.1071/SR12158.CrossRefGoogle Scholar
  31. Neyshaboury, M. R., Rahmati, M., Alavi, S. A. R., Rezaee, H., and Nazemi, A. (2015). ‘Prediction of unsaturated soil hydraulic conductivity using air permeability: Regression approach.’ Indian Journal of Agricultural Research, Vol. 49, No. 6, pp. 528–533, DOI: 10.18805/ijare.v49i6.6680.CrossRefGoogle Scholar
  32. Pachepsky, Y. A. and Rawls, W. (1999). ‘Accuracy and reliability of pedotransfer functions as affected by grouping soils.’ Soil Science Society of America Journal, Vol. 63, No. 6, pp. 1748–1757, DOI: 10.2136/sssajl999.6361748x.CrossRefGoogle Scholar
  33. Poulsen, T. G, Moldrup, P., Yamaguchi, T., and Jacobsen, O. H. (1999). ‘Predicting saturated and unsaturated hydraulic conductivity in undisturbed soils from soil water characteristics.’ Soil Science, Vol. 164, No. 12, pp. 877–887, DOI: 10.1097/00010694-199912000-00001.CrossRefGoogle Scholar
  34. Rahmati, M. (2017). ‘Reliable and accurate point-based prediction of cumulative infiltration using soil readily available characteristics: A comparison between GMDH, ANN, and MLR.’ Journal of Hydrology, Vol. 551, DOI: 10.1016/j.jhydrol.2017.05.046.CrossRefGoogle Scholar
  35. Rahmati, M., Latorre, B., Lassabatere, L., Angulo-Jaramillo, R., and Moret-Fernández, D. (2019). ‘The relevance of Philip theory to Haverkamp quasi-exact implicit analytical formulation and its uses to predict soil hydraulic properties.’ Journal of Hydrology, Vol. 570, DOI:10.1016/j.jhydrol.2019.01.038.CrossRefGoogle Scholar
  36. Rahmati, M. and Neyshaboury, M. R. (2016). ‘Soil air permeability modeling and its use for predicting unsaturated soil hydraulic conductivity.’ Soil Science Society of America Journal, Vol. 80, No. 6, pp. 1507–1513, DOI: 10.2136/sssaj2015.12.0430.CrossRefGoogle Scholar
  37. Rahmati, M., Weihermüller, L., Vanderborght, J., Pachepsky, Y. A., Mao, L., Sadeghi, S. H., Moosavi, N., Kheirfam, H., Montzka, C., Van Looy, K., Toth, B., Hazbavi, Z., Al Yamani, W., Albalasmeh, A. A., Alghzawi, M. Z., Angulo-Jaramillo, R., Antonino, A. C. D., Arampatzis, G., Armindo, R. A., Asadi, H., Bamutaze, Y., Batlle-Aguilar, J., Bechet, B., Becker, F., Blöschl, G., Bohne, K., Braud, I., Castellano, C., Cerdà, A., Chalhoub, M., Cichota, R., Cislerová, M., Clothier, B., Coquet, Y., Cornells, W., Corradini, C., Coutinho, A. P., de Oliveira, M. B., de Macedo, J. R., Duráes, M. R., Emami, H., Eskandari, I., Farajnia, A., Flammini, A., Fodor, N., Gharaibeh, M., Ghavimipanah, M. H., Ghezzehei, T. A., Giertz, S., Hatzigiannakis, E. G., Horn, R., Jiménez, J. J., Jacques, D., Keesstra, S. D., Kelishadi, H., Kiani-Harchegani, M., Kouselou, M., Kumar Jha, M., Lassabatere, L., Li, X., Liebig, M. A., Lichner, L., López, M. V., Machiwal, D., Mallants, D., Mallmann, M. S., de Oliveira Marques, J. D., Marshall, M. R., Mertens, J., Meunier, R., Mohammadi, M. H., Mohanty, B. P., Moncada, M. P., Montenegro, S., Morbidelli, R., Moret-Fernández, D., Moosavi, A. A., Mosaddeghi, M. R., Mousavi, S. B., Mozaffari, H., Nabiollahi, K., Neyshabouri, M. R, Ottoni, M. V., Ottoni Filho, T. B., Pahlavan Rad, M. R., Panagopoulos, A., Peth, S., Peyneau, P. E., Picciafuoco, T., Poesen, J., Pulido, M., Reinert, D. J., Reinsch, S., Rezaei, M., Roberts, F. P., Robinson, D., Rodrigo-Comino, J., Rotunno Filho, O. C., Saito, T., Suganuma, H., Saltalippi, C., Sándor, R., Schütt, B., Seeger, M., Sepehrnia, N., Sharifi Moghaddam, E., Shukla, M., Shutaro, S., Sorando, R., Stanley, A. A, Strauss, P., Su, Z., Taghizadeh-Mehrjardi, R., Taguas, E., Teixeira, W. G., Vaezi, A. R., Vafakhah, M., Vogel, T., Vogeler, I., Votrubova, J., Werner, S., Winarski, T., Yilmaz, D., Young, M. H., Zacharias, S., Zeng, Y., Zhao, Y., Zhao, H., and Vereecken, H. (2018). ‘Development and analysis of soil water infiltration global database.’ Earth Syst. Sci. Data, Vol. 10, pp. 1237–1263, DOI: 10.5194/essd-10-1237-2018.CrossRefGoogle Scholar
  38. van Genuchten, M. T. (1980). ‘A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.’ Soil Science Society of America Journal, Vol. 44, No. 5, pp. 892–898, DOI: 10.2136/ sssaj1980.03615995004400050002x.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers 2019

Authors and Affiliations

  1. 1.Dept. of Soil Science and EngineeringUniversity of MaraghehMaraghehIran
  2. 2.Dept. of Soil ScienceUniversity of TabrizTabrizIran

Personalised recommendations