Advertisement

KSCE Journal of Civil Engineering

, Volume 23, Issue 9, pp 3818–3830 | Cite as

Critical Reappraisal of Casagrande and Taylor Methods for Coefficient of Consolidation

  • Bartłomiej Szczepan OlekEmail author
Geotechnical Engineering
  • 19 Downloads

Abstract

Conventionally the experimental time-settlement data from an oedometer test are analyzed by standard curve-fitting methods, Casagrande’s log t method and Taylor’s root t method. This allows determination of the end of primary consolidation parameters, (EOP) as well as coefficient of consolidation, cv. Mentioned methods use both the initial and later part of the consolidation curve and are influenced by initial and secondary consolidation effects. In this study, the settlement-time data gathered from conventional oedometer tests conducted on various cohesive soils were analyzed. To assess the validity of each cv value, the experimental results were compared with the theoretical degree of consolidation curve and quantified using the scalar error function. The predictive ability of the Terzaghi consolidation model is also discussed. Based on the comparative study it has been revealed that Casagrande and Taylor methods are insufficient to correctly determine the consolidation parameters.

Keywords

consolidation primary consolidation clays parameter optimization soil behavior coefficient of consolidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledegments

Not Applicable.

References

  1. Al-Zoubi, M. S. (2008). “Coefficient of consolidation by the slope method.” ASTM Geotechnical Testing Journal, Vol. 31, No. 6, pp. 526–530, DOI:  https://doi.org/10.1520/GTJ20130097.Google Scholar
  2. Al-Zoubi, M. S. (2010). “Consolidation analysis using the settlement rate-settlement (SRS) method” Applied Clay Science, Vol. 50, No. 1, pp. 34–40, DOI:  https://doi.org/10.1016/j.clay.2010.06.020 CrossRefGoogle Scholar
  3. Al-Zoubi, M. S. (2015). “Consolidation analysis by the extended taylor method (ETM).” Jordan Journal of Civil Engineering, Vol. 9, No. 1, pp. 71–83, DOI:  https://doi.org/10.12816/0024606.Google Scholar
  4. Calvello, M. and Finno, R. J. (2004). “Selecting parameters to optimize in model calibration by inverse analysis.” Computers and Geotechnics, Vol. 31, No. 5, pp. 410–424, DOI:  https://doi.org/10.1016/j.compgeo.2004.03.004.CrossRefGoogle Scholar
  5. Casagrande, A. and Fadum, R. E. (1940). Notes on soil testing for engineering purposes, Harvard Soil Mechanics Series, No. 8, Cambridge, Massachusetts, M.A., pp. 71.Google Scholar
  6. Crawford, C. B. (1986). “State of the Art: Evaluation and interpretation of soil consolidation tests.” Consolidation of Soils: Testing and Evaluation, ASTM International, Philadelphia, PA, USA, DOI:  https://doi.org/10.1520/STP34607S.Google Scholar
  7. Dobak, P. and Dziedzic, A. (2000). “Interpretacja badań konsolidacji z zastosowaniem opcji programowych arkusza kalkulacyjnego.” Proc. The XII, Konferencja Naukowa Korbielów2000. Metody Komputerowe w Projektowaniu i Analizie Konstrukcji Hydrotechnicznych, Korbielów, Poland, pp. 1–10.Google Scholar
  8. Dobak, P. and Gaszyński, J. (2015). “Evaluation of soil permeability from consolidation analysis based on Terzaghi’s and Biot’s theory.” Geological Quarterly, Vol. 59, No. 2, pp. 373–381, DOI:  https://doi.org/10.7306/gq.1197.Google Scholar
  9. Duncan, J. M. (1993). “Limitations of conventional analysis of consolidation settlement.” Journal of Geotechnical Engineering, Vol. 119, No. 9, pp. 1333–1359.CrossRefGoogle Scholar
  10. Grimstad, G., Degago S. A., Nordal S., and Karstunen M. (2010). “Modeling creep and rate effects in structured anisotropic soft clays.” Acta Geotechnica, Vol. 6, pp. 69–81, DOI:  https://doi.org/10.1007/s11440-010-0119-y.CrossRefGoogle Scholar
  11. Indraratna, B., Chu, J.. and Rujikiatkamjorn, C. (2015). Ground improvement case histories: Embankments with special reference to consolidation and other physical methods, Butterworth-Heinemann, Oxford, UK, pp. 1–23.Google Scholar
  12. Jin, Y.-F., Yin, Z.-Y., Shen, S.-L., and Zhang, D.-M. (2016). “A new hybrid real-coded genetic algorithm and its application to parameters identification of soils.” Inverse Problems in Science and Engineering, Vol. 2016, pp. 1–24, DOI:  https://doi.org/10.1080/17415977.2016.1259315.Google Scholar
  13. Leroueil, S. (1987). “Tenth canadian colloquium: Recent developments in consolidation of natural clays.” Canadian Geotechnical Journal, Vol. 25, No. 1, pp. 85–107, DOI:  https://doi.org/10.1139/t88-010.CrossRefGoogle Scholar
  14. Levasseur, S., Malécot, Y., Boulon, M., and Flavigny, E. (2008). “Soil parameter identification using a genetic algorithm.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 32, No. 2, pp. 189–213, DOI:  https://doi.org/10.1002/nag.614.CrossRefzbMATHGoogle Scholar
  15. Lovisa, J. and Sivakugan, N. (2013). “An in-depth comparison of cv values determined using common curve-fitting — Techniques.” Geotechnical Testing Journal, Vol. 36, No. 1, pp. 1–10, DOI:  https://doi.org/10.1520/GTJ20120038.CrossRefGoogle Scholar
  16. Malécot, Y., Levasseur, S., Boulon, M., and Flavigny, E. (2004). “Inverse analysis of in-situ geotechnical measurements using a genetic algorithm.” Proc. The Ninth International Symposium on Numerical Models in Geomechanics — NUMOGIX’, Ottawa, Canada.zbMATHGoogle Scholar
  17. Mesri, G. and Feng, T. W. (2014). “Consolidation of soils.” Geotechnical Special Publication, Vol. 233, pp. 322–337, DOI:  https://doi.org/10.1061/9780784413265.026.Google Scholar
  18. Olek, B. S. (2017). Quasi-filtration phase of consolidation identification in terms of the new interpretation method of consolidometric test, Ph.D. Dissertation, AGH University of Science and Technology, Krakow, Poland.Google Scholar
  19. Olek, B. S. (2018). “Consolidation analysis of clayey soils using analytical tools.” Acta Geotechnica Slovenica, Vol. 2018, No 2, pp. 58–73, DOI:  https://doi.org/10.18690/actageotechslov.15.2.58-73.2018.CrossRefGoogle Scholar
  20. Olek, B. S. and Woźniak, H. (2016). “Determination of quasi-filtration phase of consolidation based on experimental and theoretical course of the uniaxial deformation and distribution of pore pressure.” Geology, Geophysics & Environment, Vol. 42, No. 3, pp. 353–363, DOI:  https://doi.org/10.7494/geol.2016.42.3.353.CrossRefGoogle Scholar
  21. Pal, S., Wathugala, W. G., and Kundu, S. (1996). “Calibration of a constitutive model using genetic algorithms.” Computers and Geotechnics, Vol. 19, No. 4, pp. 325–348, DOI:  https://doi.org/10.1016/S0266-352X(96)00006-7.CrossRefGoogle Scholar
  22. Robinson, R. G. (1999). “Consolidation analysis with pore water pressure measurements.” Géotechnique, Vol. 49, No. 1, pp. 127–132, DOI:  https://doi.org/10.1680/geot.1999.49.1.127.CrossRefGoogle Scholar
  23. Sebai, S. and Belkacemi, S. (2016). “Consolidation coefficient by combined probabilistic and least residuals methods.” Geotechnical Testing Journal, Vol. 39, No. 5, pp. 891–897, DOI:  https://doi.org/10.1520/GTJ20150197.CrossRefGoogle Scholar
  24. Shukla, S., Sivakugan, N., and Das, B. (2009). “Methods for determination of the coefficient of consolidation and field observations of time rate of settlement — An overview.” International Journal of Geotechnical Engineering, Vol. 3, No. 1, pp. 89–108, DOI:  https://doi.org/10.3328/IJGE.2009.03.01.89-108.CrossRefGoogle Scholar
  25. Sridharan, A. and Prakash, K. (1995). “Discussion on limitations of conventional analysis of consolidation settlement.” ASCE Journal of Geotechnical Engineering, Vol. 121, No. 6, pp. 517.CrossRefGoogle Scholar
  26. Sridharan, A. Prakash, K. and Asha, S. (1995). “Consolidation behavior of soils.” Geotechnical Testing Journal, Vol. 18, No. 1, pp. 58–68, DOI:  https://doi.org/10.1520/GTJ10122J.CrossRefGoogle Scholar
  27. Suhonen, K. (2009). Creep of soft clay, PhD Dissertation, Aalto University, Helsinki, Finland.Google Scholar
  28. Taylor, D. W. (1948). Fundamentals of soil mechanics, John Wiley and Sons, New York, N.Y., pp. 238–239.Google Scholar
  29. Terzaghi, K. (1923). “Die berechnung der durchlassigkeitzifer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen.” Mathematish-Naturwissenschaftliche, Akademie der Wissenschaften, Vol. 132, pp. 125–138 (in German).Google Scholar
  30. Terzaghi, K. and Peck, R. B. (1967). Soil mechanics in engineering practice. John Wiley & Sons, New York, N.Y., pp. 100–103.Google Scholar
  31. Tewatia, S. (1998). “Evaluation of true c v and instantaneous c v, and isolation of secondary consolidation.” Geotechnical Testing Journal, Vol. 21, No. 2, pp. 102–108, DOI:  https://doi.org/10.1520/GTJ10748J.CrossRefGoogle Scholar
  32. Tewatia, S. K., Bose, S. K. Sridharan, A., and Rath, S. (2007). “Stress induced time dependent behavior of clayey soils.” Geotechnical Geological Engineering, Vol. 25, No. 2, pp. 239–255, DOI:  https://doi.org/10.1007/s10706-006-9107-2.CrossRefGoogle Scholar
  33. Tewatia, S. K., Sridharan, A., Phalswal, M. K., Singh, M., and Rath, S. (2012). “Fastest rapid loading methods of vertical and radial consolidations.” International Journal of Geomechanics, Vol. 13, No. 4, pp. 332–339, DOI:  https://doi.org/10.1061/(ASCE)GM.1943-5622.0000213.CrossRefGoogle Scholar
  34. Tewatia, S. K. and K. Venkatachalam, K. (1997). “Improved √t method to evaluate consolidation test results.” Geotechnical Testing Journal, Vol. 20, No. 1, pp. 121–125, DOI:  https://doi.org/10.1520/GTJ11426J.CrossRefGoogle Scholar
  35. Wong, L. S., Hashim, R., and Ali, F. H. (2009). “A review on hydraulic conductivity and compressibility of peat.” Journal of Applied Sciences, Vol. 9, No. 19, pp. 3207–3218, DOI:  https://doi.org/10.3923/jas.2009.3207.3218.CrossRefGoogle Scholar
  36. Yin, Z.-Y., Jin, Y.-F., Shen, J. S., and Hicher, P. Y. (2017). “Optimization techniques for identifying soil parameters in geotechnical engineering: Comparative study and enhancement.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 2018, No. 42, pp. 70–94, DOI:  https://doi.org/10.1002/nag.2714.Google Scholar
  37. Zhu, Q.-Y., Yin, Z.-Y., Zhang, D.-M., and Huang, H.-W. (2017). “Numerical modeling of creep degradation of natural soft clays under one-dimensional condition.” KSCE Journal of Civil Engineering, KSCE, Vol. 21, No. 5, pp. 1668–1678, DOI:  https://doi.org/10.1007/s12205-016-1026-016-1026-z.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers 2019

Authors and Affiliations

  1. 1.Dept. of Structural MechanicsCracow University of TechnologyKrakowPoland

Personalised recommendations