Analysis of the Relationship among Flood Severity, Precipitation, and Deforestation in the Tonle Sap Lake Area, Cambodia Using Multi-Sensor Approach

  • Sangpil Kim
  • Hong-Gyoo SohnEmail author
  • Mi-Kyeong Kim
  • Hyongki Lee
Surveying and Geo-Spatial Information Engineering


Cambodia is the 9th country in the world to be vulnerable to natural disasters in 2011, especially due to the storm and flood. Also, it is worrisome that there is a rapid deforestation in Cambodia, which can be abundant and accelerate the increase in damage. Nevertheless, only few research has been studied to establish the relationship between deforestation and flood damage in Cambodia. In this study, several remote sensing techniques were applied to reveal the relationship among the water level change, changing patterns of precipitation, and deforestation in Cambodia. In addition, the trends of precipitation and deforestation were identified and the impact of them on future flood risk was analyzed using Monte Carlo simulations. We could find a high correlation between water level change and precipitation and predict how high the flood risk in Cambodia would increase if rainfall continued. However, a significant relationship between deforestation and increased flood risk was not identified.


Cambodia Tonle Sap Lake flooding multi-sensor imager 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alsdorf, D., Han, S. C., Bates, P., and Melack, J. (2010). “Seasonal water storage on the Amazon floodplain measured from satellites.” Remote Sensing of Environment, Vol. 114, No. 11, pp. 2448–2456, DOI: 10.1016/j.rse.2010.05.020.CrossRefGoogle Scholar
  2. Avtar, R., Sawada, H., Takeuchi, W., and Singh, G. (2012). “Characterization of forests and deforestation in Cambodia using ALOS/PALSAR observation.” Geocarto International, Vol. 27, No. 2, pp. 119–137, DOI: 10.1080/10106049.2011.626081.CrossRefGoogle Scholar
  3. Balogh, P., Golea, P., and Inceu, V. (2013). “Profit forecast model using Monte Carlo Simulation in Excel.” Romanian Statistical Review, Vol. 61, No. 12, pp. 33–40.Google Scholar
  4. Belward, A. S. (1996). The IGBP-DIS global 1 km land cover data set “DISCover”: Proposal and implementation plans, Report of the Land Cover Working Group of IGBP-DIS, IGBP-DIS Office, Toulouse, France.Google Scholar
  5. Berry, P. A. M., Garlick, J. D., Freeman, J. A., and Mathers, E. L. (2005). “Global inland water monitoring from multi-mission altimetry.” Geophysical Research Letters, Vol. 32, No. 16, pp. 1–4, DOI: 10.1029/2005GL022814.CrossRefGoogle Scholar
  6. Birkett, C. M. (1998). “Contribution of the TOPEX NASA Radar Altimeter to the global monitoring of large rivers and wetlands.” Water Resources Research, Vol. 34, No. 5, pp. 1223–1239, DOI: 10.1029/98WR00124.CrossRefGoogle Scholar
  7. Bradshaw, C. J. A., Sodhi, N. S., Peh, K. S.-H., and Brook, B. W. (2007). “Global evidence that deforestation amplifies flood risk and severity in the developing world.” Global Change Biology, Vol. 13, No. 11, pp. 2379–2395, DOI: 10.1111/j.1365-2486.2007.01446.x.CrossRefGoogle Scholar
  8. Cauhopé, M., Gennero, M. C., DoMinh, K., Cretaux, J. F., Berge-Nguyen, M., Cazenave, A., and Seyler, F. (2006). “Worldwide validation of satellite altimetry-based water level time series.” EGU General Assembly 2006. 02–07 April 2006. Wien, Austria.Google Scholar
  9. Didan, K., Munoz, A. B., Solano, R., and Huete, A. (2015). MODIS vegetation index user’s guide (MOD13 series), The University of Arizona, Tucson, AZ, USA.Google Scholar
  10. Duana, Z. and Bastiaanssena, W. G. M. (2013). “Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data.” Remote Sensing of Environment, Vol. 134, pp. 403–416, DOI: 10.1016/j.rse.2013.03.010.CrossRefGoogle Scholar
  11. EM-DAT (2016). “Disaster database.” Scholar
  12. FAO (2007). Brief on National Forest Inventory NFI, Food and Agriculture Organization of the United Nations.Google Scholar
  13. Frappart, F., Calmant, S., Cauhopé, M., Seyler, F., and Cazenave, A. (2006a). “Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin.” Remote Sensing of Environment, Vol. 100, No. 2, pp. 252–264, DOI: 10.1016/j.rse.2005.10.027.CrossRefGoogle Scholar
  14. Frappart, F., Do Minh, K., L’Hermitte, J., Cazenave, A., Ramillien, G., Le Toan, T., and Mognard-Campbell, N. (2006b). “Water volume change in the lower Mekong from satellite altimetry and imagery data.” Geophysical Journal International, Vol. 167, No. 2, pp. 570–584, DOI: 10.1111/j.1365-246X.2006.03184.x.CrossRefGoogle Scholar
  15. Hence, D. A. and Houze, R. A. (2011). “Vertical structure of hurricane eyewalls as seen by the TRMM Precipitation Radar.” Journal of Atmospheric Science, Vol. 68, No. 8, pp. 1637–1652, DOI: 10.1175/2011JAS3578.1.CrossRefGoogle Scholar
  16. Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., and Ferreira, L. G. (2002). “Overview of the radiometric and biophysical performance of the MODIS vegetation indices.” Remote Sensing of Environment, Vol. 83, Nos. 1–2, pp. 195–213, DOI: 10.1016/S0034-4257(02)00096-2.CrossRefGoogle Scholar
  17. Huete, A., Justice, C., and Liu, H. (1994). “Development of vegetation and soil indices for MODIS-EOS.” Remote Sensing of Environment, Vol. 49, No. 3, pp. 224–234, DOI: 10.1016/0034-4257(94)90018-3.CrossRefGoogle Scholar
  18. Huffman, G. J., Adler, R. F., Morrissey, M., Bolvin, D. T., Curtis, S., Joyce, R., McGavock, B., and Susskind, J. (2001). Global precipitation at one-degree daily resolution from multi-satellite observations. Journal of Hydrometeorology, Vol. 2, No. 1, pp. 36–50.Google Scholar
  19. IFRC (2012). World disaster report 2012, International Federation of Red Cross.Google Scholar
  20. Jiang, H., Liu, C., and Zipser, E. J. (2011). “A TRMM-based tropical cyclone cloud and precipitation feature database.” Journal of Applied Meteorology and Climatology, Vol. 50, No. 6, pp. 1255–1274, DOI: 10.1175/2011JAMC2662.1.CrossRefGoogle Scholar
  21. Karl, T. R., Meehl, G. A., Miller, C. D., Hassol, S. J., Waple, A. M., and Murray, W. L. (2008). Weather and cliamte extremes in a changing climate; Regions of focus: North America, Hawaii, Caribbean, and US Pacific Islands, US Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC, USA.Google Scholar
  22. Kelley, O. A. (2014). “Where the least rainfall occurs in the Sahara Desert, the TRMM radar reveals a different pattern of rainfall each season.” Journal of Climate, Vol 27, No. 18, pp. 6919–6939, DOI: 10.1175/JCLI-D-14-00145.1.CrossRefGoogle Scholar
  23. Lee, H., Beighley, R. E., Alsdorf, D., Jung, H. C., Shum, C. K., Duan, J., Guo, J., Yamazaki, D., and Andreadis, K. (2011). “Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry.” Remote Sensing of Environment, Vol. 115, No. 12, pp. 3530–3538, DOI: 10.1016/j.rse.2011.08.015.CrossRefGoogle Scholar
  24. Lee, H., Durand, M., Jung, H. C., Alsdorf, D., Shum, C. K., and Sheng, Y., (2010). “Characterization of surface water storage change in Arctic lakes using simulated SWOT measurements.” International Journal of Remote Sensing, Vol. 31, No. 14, pp. 3931–3953, DOI: 10.1080/01431161.2010.483494.CrossRefGoogle Scholar
  25. Lee, H., Jung, H. C., Yuan, T., Beighley, R. E., and Duan, J. (2014). “Controls of terrestrial water storage changes over the central Congo Basin determined by integrating PALSAR ScanSAR, Envisat altmetry, and GRACE data.” Remote Sensing of the Terrestrial Water Cycle, V. Lakshmi, Ed., Vol. 206, American Geophysical Union and John Wiley & Son, Inc., Canada, pp. 117–129, DOI: 10.1002/9781118872086.ch7.Google Scholar
  26. Liu, H. Q. and Huete, A. (1995). “A feedback based modification of the NDVI to minimize canopy background and atmospheric noise.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 2, pp. 457–465, DOI: 10.1109/36.377946.CrossRefGoogle Scholar
  27. Lonfat, M., Marks Jr., F. D., and Chen, S. S. (2004). “Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) microwave imager: A global perspective.” Monthly Weather Review, Vol. 132, No. 7, pp. 1645–1660.CrossRefGoogle Scholar
  28. Long, S., Fatoyinbo, T., and Policelli, F. (2014). “Flood extent mapping for Namibia using change detection and thresholding with SAR.” Environmental Research Letters, Vol. 9, No. 3, pp. 1–8, DOI: 10.1088/1748-9326/9/3/035002.CrossRefGoogle Scholar
  29. Maani, K. (2017). Multi-stakeholder decision making for complex problems: A systems thinking approach with cases, World Scientific Publishing Company.CrossRefGoogle Scholar
  30. Maillard, P, Bercher, N., and Calmant, S. (2015). “New processing approaches on the retrieval of water levels in Envisat and SARAL radar altimetry over rivers: A case study of the São Francisco River, Brazil.” Remote Sensing of Environment, Vol. 156, pp. 226–241, DOI: 10.1016/j.rse.2014.09.027.CrossRefGoogle Scholar
  31. Mason, D. C., Davenport, I. J., Neal, J. C., Schumann, G. J. P., and Bates, P. D. (2012). “Near real-time flood detection in urban and rural areas using high-resolution synthetic aperture radar images.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 8, pp. 3041–3052, DOI: 10.1109/TGRS.2011.2178030.CrossRefGoogle Scholar
  32. McCulloch, J. S. G. and Robinson, M. (1993). “History of forest hydrology.” Journal of Hydrology, Vol. 150, Nos. 2–4, pp. 189–216, DOI: 10.1016/0022-1694(93)90111-L.CrossRefGoogle Scholar
  33. Morton, D. C., DeFries, R. S., Shimabukuro, Y. E., Anderson, L. O., Bon Espírito-Santo, F. D., Hansen, M., and Carroll, M. (2005). “Rapid assessment of annual deforestation in the Brazilian amazon using MODIS data.” Earth Interactions, Vol. 9, No. 8, pp. 1–22, DOI: 10.1175/EI139.1.CrossRefGoogle Scholar
  34. NCDM (2003). Mapping vulnerability to natural disaster in Cambodia, National Committee on Disaster Management, Phnom Penh, Cambodia.Google Scholar
  35. Okeowo, M. A., Lee, H., Hossain, F., and Getirana, A. (2017). Automated generation of lakes and reservoirs water elevation changes from satellite radar altimetry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 10, No. 8, pp. 3465–3481, DOI: 10.1109/jstars.2017.2684081,DOI: 10.1109/jstars.2017.2684081.CrossRefGoogle Scholar
  36. Phoeurn, C. and Ly, S. (2018). “Assessment of satellite rainfall estimates as a pre-analysis for water environment analytical tools: A case study for Tonle Sap lake in Cambodia.” Engineering Journal, Vol. 22, No. 1, pp. 229–241, DOI: 10.4186/ej.2018.22.1.229.CrossRefGoogle Scholar
  37. Pryde, J. K., Osorio, J., Wolfe, M. L., Heatwole, C., Benham, B., and Cardenas, A. (2007). Comparison of watershed boundaries derived from SRTM and ASTER digital elevation datasets and from a digitized topographic map, American Society of Agricultural and Biological Engineers Paper 072093. St. Joseph, Michigan, USA.Google Scholar
  38. Reuters, T. (2003). Logging threatens Cambodian tragedy, United Nations.Google Scholar
  39. Sakamoto, T., Nguyen, N. V., Kotera, A., Ohno, H., Ishitsuka, N., and Yokozawa, M. (2007). “Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery.” Remote Sensing of Environment, Vol. 109, No. 3, pp. 295–313, DOI: 10.1016/j.rse.2007.01.011.CrossRefGoogle Scholar
  40. Simpson, J., Adler, R. F., and North, G. R. (1988). “A proposed Tropical Rainfall Measuring Mission (TRMM) satellite.” Bull Am Meteorol Soc., Vol. 69, No. 3, pp. 278–295,<0278:APTRMM>2.0.CO;2.CrossRefGoogle Scholar
  41. Sulistioadi, Y. B., Tseng, K.-H., Shum, C. K., Hidayat, H., Sumaryono, M., Suhardiman, A., Setiawan, F., and Sunarso, S. (2015). “Satellite radar altimetry for monitoring small rivers and lakes in Indonesia.” Hydrology and Earth System Sciences, Vol. 19, No. 1, pp. 341–359,<0278:APTRMM>2.0.CO;2.CrossRefGoogle Scholar
  42. UNDP (2011). Building resilience: The future for rural livelihoods in the face of climate change, Cambodia Human Development Report 2011, United Nation Development Programme.Google Scholar
  43. UNU-EHS (2011). World risk report 2011, Alliance Development Works.Google Scholar
  44. USGS (2002). Design of a real-time ground-water level monitoring network and portrayal of hydrologic data in southern Florida, Water-Resource Investigations Report 01-4275, US Geological Survey, Tallahassee, FL, USA.Google Scholar
  45. Wingham, D. J., Rapley, C. G., and Griffiths, H. (1986). “New techniques in satellite altimeter tracking systems.” Proceedings of IGARSS’86 Symposium, Zürich, pp. 1339–1344.Google Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sangpil Kim
    • 1
  • Hong-Gyoo Sohn
    • 1
    Email author
  • Mi-Kyeong Kim
    • 1
  • Hyongki Lee
    • 2
  1. 1.Dept. of Civil and Environmental EngineeringYonsei UniversitySeoulKorea
  2. 2.Dept. of Civil and Environmental EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations