Advertisement

KSCE Journal of Civil Engineering

, Volume 23, Issue 3, pp 1043–1054 | Cite as

Seismic Slope Stability Evaluation Considering Rock Mass Disturbance Varying in the Slope

  • An-Jui LiEmail author
  • Zhiguang Qian
  • Jing-Cai Jiang
  • Andrei Lyamin
Geotechnical Engineering
  • 67 Downloads

Abstract

Seismic effect is one of the most commonly considered factors in rock slope safety design. This study adopts the finite element lower bound limit analysis method to study the seismic stability of disturbed rock slopes considering inhomogeneity caused by rock mass disturbance. Moreover, this research investigates different earthquake magnitudes by considering various seismic coefficients. Results are presented as seismic rock slope stability charts. In addition, the recommended blasting damage zones are also investigated in this study. Results show the chart solutions can provide a reasonable tool for the preliminary evaluations of the seismic safety factors for rock slope stability. The case studies demonstrate that a safe design can be done if the earthquake effects are considered reasonably. Moreover, consideration of varying rock mass disturbance in the slope is helpful to capture the failure mechanism more realistically when compared to the slope case without varying rock mass disturbance. For comparison purposes, the conventional limit equilibrium analysis and the equivalent Mohr-Coulomb parameters are used to perform analyses of the rock slope stability.

Keywords

earthquake damaged zone stability number disturbance factor stability chart 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Areias, P. and Rabczuk, T. (2013). “Finite strain fracture of plates and shells with configurational forces and edge rotations.” International Journal for Numerical Methods in Engineering, vol. 94, no. 12, pp. 1099–1122. DOI: 10.1002/nme.4477.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Areias, P., Rabczuk, T., and Camanho, P. P. (2014). “Finite strain fracture of 2D problems with injected anisotropic softening elements.” Theoretical and Appied Fracture Mechanics, vol. 72, pp. 50–63. DOI: 10.1016/j.tafmec.2014.06.006.CrossRefGoogle Scholar
  3. Areias, P., Rabczuk, T., and Dias-da-Costa, P. P. (2013). “Element-sise fracture algorithm based on rotation of edges.” Engineering Fracture Mechanics, vol. 110, pp. 113–137. DOI: 10.1016/j.engfracmech.2013.06.006.CrossRefGoogle Scholar
  4. Areias, P., Msekh, M. A., and Rabczuk, T. (2016). “Damage and fracture algorithm using the screened Poisson equation and local remeshing.” Engineering Fracture Mechanics, vol. 158, pp. 116–143. DOI: 10.1016/j.engfracmech.2015.10.042.CrossRefGoogle Scholar
  5. Areias, P., Reinoso, J., Camanho, P. P., Cesar de Sa, J., and Rabczuk, T. (2018). “Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation.” Engineering Fracture Mechanics, vol. 189, pp. 339–360. DOI: 10.1016/j.engfracmech.2017.11.017.CrossRefGoogle Scholar
  6. Baker, R., Shukha, R., Operstein, V., and Frydman, S. (2006). “Stability charts for pseudo-static slope stability analysis.” Soil Dynamics and Earthquake Engineering, vol. 26, no. 9, pp. 813–823. DOI: 10.1016/j.compgeo.2014.12.008.CrossRefGoogle Scholar
  7. Barton, N. (2002). “Some new Q-value correlations to assist in site characterisation and tunnel design.” International Journal of Rock Mechanics and Mining Sciences, vol. 39, no. 2, pp. 185–216. DOI: 10.1016/S1365-1609(02)00011-4.CrossRefGoogle Scholar
  8. Bieniawski, Z. T. (1976). “Exploration for rock engineering.” Proceedings of the Symposium on Exploration for Rock Engineering, Johannesburg, South Africa.Google Scholar
  9. Bishop, A. W. (1955). “The use of the slip circle in the stability analysis of slopes.” Geotechnique, vol. 5, no. 1, pp. 7–17. DOI: 10.1680/geot.1955.5.1.7.CrossRefGoogle Scholar
  10. Bray, J. D. and Travasarou, T. (2009). “Pseudostatic coefficient for use in simplified seismic slope stability evaluation.” Journal of Geotechnical and Geoenvironmental Engineering, vol. 135, no. 9, pp. 1336–1340. DOI: 10.1061/(ASCE)GT.1943-5606.000001.CrossRefGoogle Scholar
  11. Chang, C.-J., Chen, W. F., and Yao, J. T. (1984). “Seismic displacements in slopes by limit analysis.” Journal of Geotechnical Engineering, vol. 110, no. 7, pp. 860–874. DOI: 10.1061/(ASCE)0733-9410(1984)110:7(860).CrossRefGoogle Scholar
  12. DeWayne, H. and Julie, M. (1997). Guidelines for evaluating and mitigating seismic hazards in California, The Public Information Offices of the California Geological Survey, CA, USA.Google Scholar
  13. Fu, W. and Liao, Y. (2010). “Non-linear shear strength reduction technique in slope stability calculation.” Computers and Geotechnics, vol. 37, no. 3, pp. 288–298. DOI: 10.1016/j.compgeo.2009.11.002.CrossRefGoogle Scholar
  14. Hoek, E. (2012). Blast damage factor D, Technical Note for RocNews.Google Scholar
  15. Hoek, E. and Brown, E. T. (1980). Underground excavations in rock, Institution of Mining and Metallurgy, London, UK.Google Scholar
  16. Hoek, E., Carranza-Torres, C., and Corkum, B. (2002). “Hoek-Brown failure criterion-2002 edition.” Proceedings of NARMS-TAC, Toronto, Canada, pp. 267–273.Google Scholar
  17. Hoek, E. and Karzulovic, A. (2000). “Rock mass properties for surface mines.” Slope Stability in Surface Mining, W. A. Hustrulid, M. K. McCarter and D. J. A. van Zyl, Eds., Society for Mining, Metallurgical and Exploration (SME), Littleton, CO, USA, pp. 59–70.Google Scholar
  18. Hoek, E., Marinos, P., and Benissi, M. (1998). “Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation.” Bulletin of Engineering Geology and the Environment, vol. 57, no. 2, pp. 151–60. DOI: 10.1007/s100640050031.CrossRefGoogle Scholar
  19. Hung, C., Liu, C. H., Lin, G. W., and Leshchinsky, B. (2018). “The Aso-Bridge coseismic landslide: A numerical investigation of failure and runout behavior using finite and discrete element methods.” Bulletin of Engineering Geology and the Environment, pp. 1–14. DOI: 10.1007/s10064-018-1309-3.Google Scholar
  20. Hynes-Griffin, M. E. and Franklin, A. G. (1984). Rationalizing the seismic coefficient method, DTIC Document.Google Scholar
  21. Janbu, N. (1973). “Slope stability computations, embankment-dam engineering,” vol Casagrande, Wiley, New York, NY, USA.Google Scholar
  22. Jiang, X. Y., Cui, P., and Liu, C. Z. (2016). “A chart-based seismic stability analysis method for rock slopes using Hoek-Brown failure criterion.” Engineering Geology, vol. 209, pp. 196–208. DOI: 10.1016/j.enggeo.2016.05.015.CrossRefGoogle Scholar
  23. Li, A., Khoo, S., Lyamin, A., and Wang, Y. (2016). “Rock slope stability analyses using extreme learning neural network and terminal steepest descent algorithm.” Automation in Construction, vol. 65, pp. 42–50. DOI: 10.1016/j.autcon.2016.02.004.CrossRefGoogle Scholar
  24. Li, A., Lyamin, A., and Merifield, R. (2009). “Seismic rock slope stability charts based on limit analysis methods.” Computers and Geotechnics, vol. 36, no. 1, pp. 135–148.CrossRefGoogle Scholar
  25. Li, A., Merifield, R., and Lyamin, A. (2008). “Stability charts for rock slopes based on the Hoek-Brown failure criterion.” International Journal of Rock Mechanics and Mining Sciences, vol. 45, no. 5, pp. 689–700. DOI: 10.1016/j.compgeo.2008.01.004.CrossRefGoogle Scholar
  26. Li, A., Merifield, R., and Lyamin, A. (2011). “Effect of rock mass disturbance on the stability of rock slopes using the Hoek-Brown failure criterion.” Computers and Geotechnics, vol. 38, no. 4, pp. 546–558. DOI: 10.1016/j.compgeo.2011.03.003.CrossRefGoogle Scholar
  27. Li, A., Qian, Z., Kong, V., and Lyamin, V. (2013). “Comparisons of seismic rock slope stability assessments between the Hoek-Brown and Mohr Coulomb criteria.” Proceedings of the 22nd Australasian Conference on the Mechanics of Structures and Materials, pp. 1–6.Google Scholar
  28. Li, H., Xiao, K., and Liu, Y. (2007). “Factor of safety analysis of bedding rock slope under seismic load.” Chin J Rock Mech Eng, vol. 26, no. 12, pp. 2385–2394.Google Scholar
  29. Lim, K., Li, A., Schmid, A., and Lyamin, A. (2017). “Slope-stability assessments using finite-element limit-analysis methods.” International Journal of Geomechanics, Vol. 17, No. 2, DOI: 10.1061/(ASCE)GM.1943-5622.0000715.Google Scholar
  30. Lyamin, A. and Sloan, S. (2002). “Lower bound limit analysis using non-linear programming.” International Journal for Numerical Methods in Engineering, vol. 55, no. 5, pp. 573–611. DOI: 10.1002/nme.511.CrossRefzbMATHGoogle Scholar
  31. Marinos, P., Marinos, V., and Hoek, E. (2007). “Geological Strength Index (GSI). A characterization tool for assessing engineering properties for rock masses.” Underground Works under Special Conditions, M. Romana, A. Perucho, and C. Olalla, Eds., Taylor and Francis, Lisbon, Spain, pp. 13–21.CrossRefGoogle Scholar
  32. Marinos, V., Marinos, P., and Hoek, E. (2005). “The geological strength index: Applications and limitations.” Bulletin of Engineering Geology and the Environment, vol. 64, no. 1, pp. 55–65. DOI: 10.1007/s10064-004-0270-5.CrossRefGoogle Scholar
  33. Michalowski, R. L. (2002). “Stability charts for uniform slopes.” Journal of Geotechnical and Geoenvironmental Engineering, vol. 28, no. 4, pp. 351–355. DOI: 10.1061/(ASCE)1090-0241(2002)128:4(351).MathSciNetCrossRefGoogle Scholar
  34. Qian, Z., Li, A., Lyamin, A., and Wang, C. (2017). “Parametric studies of disturbed rock slope stability based on finite element limit analysis methods.” Computers and Geotechnics, vol. 81, pp. 155–166. DOI: 10.1016/j.compgeo.2016.08.012.CrossRefGoogle Scholar
  35. Qian, Z., Li, A., Merifield, R., and Lyamin, A. (2015). “Slope stability charts for two-layered purely cohesive soils based on finite-element limit analysis methods.” International Journal of Geomechanics, Vol. 15, No. 3, 06014022, DOI: 10.1061/(ASCE)GM.1943-5622.0000438.Google Scholar
  36. Rabczuk, T., Zi, G., Bordas, S., and Nguyen-Xuan, H. (2010). “A simple and robust three-dimensional cracking-particle method without enrichment.” Computer Methods in Applied Mechanics and Engineering, vol. 199, Nos. 37–40, pp. 2437–2455. DOI: 10.1016/j.cma.2010.03.031.CrossRefzbMATHGoogle Scholar
  37. Ren, H., Zhuang, X., Cai, Y., and Rabczuk, T. (2016). “Dual-horizon peridynamics.” International Journal for Numerical Methods in Engineering, vol. 108, no. 12, pp. 1451–1476. DOI: 10.1002/nme.5257.MathSciNetCrossRefGoogle Scholar
  38. Ren, H., Zhuang, X., Cai, Y., and Rabczuk, T. (2017). “Dual-horizon peridynamics: A stable solution to varying horizons.” Computer Methods in Applied Mechanics and Engineering, vol. 318, pp. 762–7826. DOI: 10.1016/j.cma.2016.12.031.MathSciNetCrossRefGoogle Scholar
  39. Saade, A., Abou-Jaoude, G., and Wartman, J. (2016). “Regional-scale c0-seismic landslide assessment using limit equlibrium analysis.” Engineering Geology, vol. 204, pp. 53–64. DOI: 10.1016/j.enggeo.2016.02.004.CrossRefGoogle Scholar
  40. Seed, H. B. (1979). “Considerations in the earthquake-resistant design of earth and rockfill dams.” Geotechnique, vol. 29, no. 3, pp. 215–263. DOI: 10.1680/geot.1979.29.3.215.CrossRefGoogle Scholar
  41. Shen, J., Karakus, M., and Xu, C. (2013). “Chart-based slope stability assessment using the Generalized Hoek-Brown criterion.” International Journal of Rock Mechanics and Mining Sciences, vol. 64, pp. 210–219. DOI: 10.1016/j.ijrmms.2013.09.002.CrossRefGoogle Scholar
  42. Shou, K. J. and Wang, C. F. (2003). “Analysis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan.” Engineering Geology, vol. 68, Nos. 3–4, pp. 237–50. DOI: 10.1016/S0013-7952(02)00230-2.CrossRefGoogle Scholar
  43. Shou, K. J., Wu, C. C., and Lin, J. F. (2018). “Predictive analysis of landslide susceptibility under climate change conditions-A study on the Ai-Liao watershed in sothern Taiwan.” Journal of GeoEngineering, vol. 13, no. 1, pp. 13–27. DOI: 10.6310/jog.201803_13(1).2.Google Scholar
  44. Sloan, S. W. (2013). “Geotechnical stability analysis.” Geotechnique, vol. 63, no. 7, pp. 531–572. DOI: 10.1680/geot.12.RL.001.CrossRefGoogle Scholar
  45. Sonmez, H., Gokceoglu, C., and Ulusay, R. (2004). “Indirect determination of the modulus of deformation of rock masses based on the GSI system.” International Journal of Rock Mechanics and Mining Sciences, vol. 41, no. 5, pp. 849–857. DOI: 10.1016/j.ijrmms.2003.01.006.CrossRefGoogle Scholar
  46. Sonmez, H. and Ulusay, R. (1999). “Modifications to the Geological Strength Index (GSI) and their applicability to stability of slopes.” International Journal of Rock Mechanics and Mining Sciences, vol. 36, no. 6, pp. 743–760. DOI: 10.1016/S0148-9062(99)00043-1.CrossRefGoogle Scholar
  47. Taheri, A. and Tani, K. (2010). “Assessment of the stability of rock slopes by the slope stability rating classification system.” Rock Mechanics and Rock Engineering, vol. 43, no. 3, pp. 321–333. DOI: 10.1007/s00603-009-0050-4.CrossRefGoogle Scholar
  48. Taylor, D. W. (1937). “Stability of earth slopes.” Boston Society of Civil Engineers.Google Scholar
  49. Terzaghi, K. (1950). “Mechanics of landslides' in applications of geological engineering practice.” Bull. Geol. Soc. Amer, Vol. 40, p. 83.Google Scholar
  50. Tsiambaos, G. and Saroglou, H. (2010). “Excavatability assessment of rock masses using the Geological Strength Index (GSI).” Bulletin of Engineering Geology and the Environment, vol. 69, no. 1, pp. 13–27. DOI: 10.1007/s10064-009-0235-9.CrossRefGoogle Scholar
  51. Xia, C. C., Zhou, S. W., Zhang, P. Y., Hu, Y. S., and Zhou, Y. (2015). “Strength criterion for rocks subjected to cyclic stress and temperature variations.” Journal of Geophysics and Engineering, Vol. 12, No. 5, p. 753, DOI: 10.1088/1742-2132/12/5/753.Google Scholar
  52. Xu, J., Pan, Q. Yang, X. L., and Li, W. (2018). “Stability charts for rock slopes subjected to water drawdown based on the modified nonlinear Hoek-Brown failure criterion.” International Journal of Geomechanics, Vol. 18, No. 1, 04017133, DOI: 10.1061/(ASCE)GM.1943-5622.0001039.Google Scholar
  53. Yu, H., Salgado, R., Sloan, S., and Kim, J. (1998). “Limit analysis versus limit equilibrium for slope stability.” Journal of Geotechnical and Geoenvironmental Engineering, vol. 124, no. 1, pp. 1–11. DOI: 10.1061/(ASCE)1090-0241(1998)124:1(1).CrossRefGoogle Scholar
  54. Zhang, Y., Zhang, J., Chen, G., Zheng, L., and Li, Y. (2015). “Effects of vertical seismic force on initiation of the Daguangbao landslide induced by the 2008 Wenchuan earthquake.” Soil dynamics and earthquake engineering, vol. 73, pp. 91–102. DOI: 10.1016/j.soildyn.2014.06.036.CrossRefGoogle Scholar
  55. Zhou, S. W., Xia, C. C., Hu, Y. S., Zhou, Y., and Zhang, P. Y. (2015). “Damage modeling of basaltic rock subjected to cyclic temperature and uniaxial stress.” International Journal of Rock Mechanics and Mining Sciences, vol. 77, no. 7, pp. 163–173. DOI: 10.1016/j.ijrmms.2015.03.038.CrossRefGoogle Scholar
  56. Zhou, S. W., Xia, C. C., Zhao, H. B., Mei, S. H., and Zhou, Y. (2017), “Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature.” Acta Geophysica, vol. 65, no. 5, pp. 893–906. DOI: 10.1007/s11600-017-0073-2.CrossRefGoogle Scholar
  57. Zhou, S. W., Xia, C. C., and Zhou, Y. (2018). “A theoretical approach to quantify the effect of random cracks on rock deformation in uniaxial compression.” Journal of Geophysics and Engineering, vol. 15, no. 3, pp. 627, DOI: 10.1088/1742-2140/aaa1ad.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers 2019

Authors and Affiliations

  • An-Jui Li
    • 1
    Email author
  • Zhiguang Qian
    • 2
  • Jing-Cai Jiang
    • 3
  • Andrei Lyamin
    • 4
  1. 1.Dept. of Civil and Construction EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan
  2. 2.School of EngineeringDeakin UniversityGeelongAustralia
  3. 3.Dept. of Civil and Environmental EngineeringThe University of TokushimaTokushimaJapan
  4. 4.Centre for Geotechnical and Materials ModellingThe University of NewcastleCallaghanAustralia

Personalised recommendations