Ground Effects on the Vortex-induced Vibration of Bridge Decks

  • Wenhao Mao
  • Zhiyong ZhouEmail author
  • Ai Huilin
Structural Engineering


The present study investigated the ground effects on the VIV of a closed box girder based on wind tunnel tests and numerical methods. First, we presented a vibration measurement system for wind-tunnel test to simulate ground effects on the bridge girder. Second, we investigated the Strouhal number (St), the VIV lock-in phenomena over a range of wind velocities, and the maximum VIV amplitudes and their change laws in correlation with the height from the ground in two different ground conditions. The outcomes showed the following: that a low height from the ground can lead to high St numbers; that ground effects did not change the width of VIV lock-in range, but did impel VIVs to occur earlier in the uniform flow field; and that the maximum VIV amplitudes was reduced and the VIV lock-in range narrowed in the turbulent flow field. Finally, we conducted the numerical simulation method to study the ground effect mechanism on VIVs. The numerical results showed that the periodic vortex shedding will generate periodic forces on the structure, which leads to the occurrence of VIVs. Ground effects can speed up vortex shifting, whereas aerodynamic forces on the deck are weakened.


ground effects numerical simulation St number Vortex-Induced Vibration (VIV) wind tunnel test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barber, T. (2006). “Aerodynamic ground effects: a case study of the integration of CFD and experiments.” International Journal of Vehicle Design, Vol. 40, No. 4, pp. 299–316, DOI: 10.1504/IJVD.2006.009068.CrossRefGoogle Scholar
  2. Battista, R. C. and Pfeil, M. S. (2000). “Reduction of vortex-induced oscillations of Rio-Niterói bridge by dynamic control devices.” J. Wind Eng. Ind. Aerodyn, Vol. 84, No. 3, pp. 273–288, DOI: 10.1016/S0167-6105(99)00108-7CrossRefGoogle Scholar
  3. Cummings, R. M. and Schütte, A. (2013). “Detached-Eddy Simulation of the vortical flow field about the VFE-2 delta wing.” Aerosp. Sci. Technol, Vo. 24, No. 1, pp. 66–76, DOI: 10.1016/j.ast.2012.02.007.CrossRefGoogle Scholar
  4. Cummings, R. M., Morton, S. A., and McDaniel, D. R. (2008). “Experiences in accurately predicting time-dependent flows.” Prog. Aerosp. Sci, Vol. 44, No. 4, pp. 241–257, DOI: 10.1016/j.paerosci.2008.01.001.CrossRefGoogle Scholar
  5. Diana, G., Resta, F., Belloli, M., and Rocchi, D. (2006). “On the vortex shedding forcing on suspension bridge deck.” J. Wind Eng. Ind. Aerodyn., Vol. 94, No. 5, pp. 341–363, DOI: 10.1016/j.jweia.2006.01.017.CrossRefGoogle Scholar
  6. Diana, G., Rocchi, D., Argentini, T., and Muggiasca, S. (2010). “Aerodynamic instability of a bridge deck section model: linear and nonlinear approach to force modeling.” J. Wind Eng. Ind. Aerodyn., Vol. 98, Nos. 6–7, pp. 363–374, DOI: 10.1016/j.jweia.2010.01.003.CrossRefGoogle Scholar
  7. Frandsen, J. B. (2001). “Simultaneous pressures and accelerations measured full-scale on the Great Belt East suspension bridge.” J. Wind Eng. Ind. Aerodyn., Vol. 89, No. 1, pp. 95–129, DOI: 10.1016/S0167-6105(00)00059-3.CrossRefGoogle Scholar
  8. Fransos, D. and Bruno, L. (2006). “Determination of the aeroelastic transfer functions for streamlined bodies by means of a Navier-Stokes solver.” Mathematical and Computer Modelling, Vol. 43, Nos. 5–6, pp. 506–529, DOI: 10.1016/j.mcm.2005.10.002.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Fujino, Y. and Yoshida, Y. (2002). “Wind-induced vibration and control of Trans-Tokyo bay crossing bridge.” J. Struct. Eng., Vol. 128, No. 8, pp. 1012–1025, DOI: 10.1061/(ASCE)0733-9445(2002)128:8(1012).CrossRefGoogle Scholar
  10. Ge, Y. J., Yang, Y. X., and Cao, F. C. (2011). “VIV sectional model testing and field measurement of Xihoumen Suspension Bridge with twin box girder.” Proceedings of 13th International Conference on Wind Engineering, Netherlands, Amsterdam, pp. 11–15.Google Scholar
  11. Justin, G. and Lance W. Traub. (2012). “Experimental and theoretical investigation of ground effects at low reynolds numbers.” Journal of Aircraft, Vol. 49, No. 2, pp. 576–586, DOI: 10.2514/1.C031595.CrossRefGoogle Scholar
  12. Komatsu, S. and Kobayashi, H. (1980). “Vortex-induced oscillation of bluff cylinders.” J. Wind Eng. Ind. Aerodyn., Vol. 6, Nos. 3–4, pp. 335–362, DOI: 10.1016/0167-6105(80)90010-0.CrossRefGoogle Scholar
  13. Kumarasena, T., Scanlan, R. H., and Ehsan, F. (1991). “Wind-induced motions of deer isle bridge.” Journal of Structural Engineering, Vol. 117, No. 11, pp. 3356–3374, DOI: 10.1061/(ASCE)0733-9445(1991)117:11(3356).CrossRefGoogle Scholar
  14. Larsen, A. (1995). “A generalized model for assessment of vortexinduced vibrations of flexible structures.” J. Wind Eng. Ind. Aerodyn., Vol. 57, Nos. 2–3, pp. 281–294, DOI: 10.1016/0167-6105(95)00008-F.CrossRefGoogle Scholar
  15. Larsen, A., Esdahl, S., Andersen, J. E., and Vejrum, T. (2000). “Storebæl suspension bridge-vortex shedding excitation and mitigation by guide vanes.” J. Wind Eng. Ind. Aerodyn., Vol. 88, Nos. 2–3, pp. 283–296, DOI: 10.1016/S0167-6105(00)00054-4.CrossRefGoogle Scholar
  16. Larsen, A. and Wall, A. (2012). “Shaping of bridge box girders to avoid vortex shedding response.” J. Wind Eng. Ind. Aerodyn., Vols. 104–106, pp. 159–165, DOI: 10.1016/j.jweia.2012.04.018.CrossRefGoogle Scholar
  17. Larsen, A. and Walther, J. H. (1997). “Aeroelastic analysis of bridge girder sections based on discrete vortex simulations.” J. Wind Eng. Ind. Aerodyn., Vols. 67–68, pp.253–265, DOI: 10.1016/S0167-6105(97)00077-9.CrossRefGoogle Scholar
  18. Lee, J., Han, C. S., and Bae, C. H. (2010). “Influence of wing configurations on aerodynamic characteristics of wings in ground effects.” Journal of Aircraft, Vol. 47, No. 3, pp. 1030–1036, DOI: 10.2514/1.46703.CrossRefGoogle Scholar
  19. Li, H., Laima, S. J., Zhang, Q., Li, N., and Liu, Z. (2014). “Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge.” J. Wind Eng. Ind. Aerodyn., Vol. 124, pp. 54–67, DOI: 10.1016/j.jweia.2013.11.006.CrossRefGoogle Scholar
  20. Li, H., Laima, S., Ou, J., Zhao, X., Zhou, W., Yu, Y., Li, N., and Liu, Z. (2011). “Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements.” Engineering Structures, Vol. 33, No. 6, pp. 1894–1907, DOI: 10.1016/j.engstruct.2011.02.017.CrossRefGoogle Scholar
  21. Lu, H., Lua, K. B., Lim, T. T., and Yeo, K. S. (2014). “Ground effect on the aerodynamics of a two-dimensional oscillating airfoil.” Exp Fluids., Vol. 55, No. 7, pp. 1787, DOI: 10.1007/s00348-014-1787-4.CrossRefGoogle Scholar
  22. Mahon, S. and Zhang, X. (2004). “Computational analysis of pressure and wake characteristics of an aerofoil in ground effects.” Journal of Fluids Engineering, Vol. 127, No. 2, pp. 290–298, DOI: 10.1115/1.1891152.CrossRefGoogle Scholar
  23. Marshall, D. W. Newman, S. J., andWilliams, C. B. (2010). “Boundary layer effects on a wing in ground effects.” Aircraft Engineering and Aerospace Technology, Vol. 82, No. 2, pp. 99–107, DOI: 10.1108/000226610110 53391.CrossRefGoogle Scholar
  24. Mokry, M. (2001). “Numerical simulation of aircraft trailing vortices interacting with ambient shear or ground.” Journal of Aircraft, Vol. 38, No. 4, pp. 636–643, DOI: 10.2514/2.2840.CrossRefGoogle Scholar
  25. Owen, J. S., Vann, A. M., Davies, J. P., and Blakeborough, A. (1996). “The prototype testing of Kessock Bridge: Response to vortex shedding.” J. Wind Eng. Ind. Aerodyn, Vol. 60, No. 1, pp. 91–108, DOI: 10.1016/0167-6105(96)00026-8.CrossRefGoogle Scholar
  26. Park, K. and Lee, J. (2008). “Influence of endplate on aerodynamic characteristics of low-aspect-ratio wing in ground effects.” Journal of Mechanical Science and Technology, Vol. 22, No. 12, pp. 2578–2589, DOI: 10.1007/s12206-008-0805-y.CrossRefGoogle Scholar
  27. Qin, Y., Qu, Q., Liu, P., Tian, Y., and Lu, Z. (2015). “DES study of the aerodynamic forces and flow physics of a delta wing in static ground effect.” Aerospace Science and Technology, Vol. 43, p. 423–436, DOI: 10.1016/j.ast.2015.04.004.Google Scholar
  28. Riou, J., Garnier, E., and Basdevant, C. (2010). “Compressibility effects on the vortical flow over a 65? sweep delta wing.” Phys. Fluids., Vol. 22, No. 3, pp. 35–102, DOI: 10.1063/1.3327286.CrossRefzbMATHGoogle Scholar
  29. Ronaldo, C. B. and Michèle, S. P. (2000). “Reduction of vortex-induced oscillations of Rio-Niterói bridge by dynamic control devices.” J. Wind Eng. Ind. Aerodyn., Vol. 84, No. 3, pp. 273–288, DOI: 10.1016/S0167-6105(99) 00108-7.CrossRefGoogle Scholar
  30. Sarwar, M. W. and Ishihara, T. (2010). “Numerical study on suppression of vortex-induced vibrations of box girder bridge section by aerodynamic countermeasures.” J. Wind Eng. Ind. Aerodyn., Vol. 98, No. 12, pp. 701–711, DOI: 10.1016/j.jweia.2010.06.001.CrossRefGoogle Scholar
  31. Schewe, G. and Larsen, A. (1998). “Reynolds number effects in the flow around a bluff bridge deck cross section.” J. Wind Eng. Ind. Aerodyn., Vols. 74–76, pp. 829–838, DOI: 10.1016/S0167-6105(98)00075-0.CrossRefGoogle Scholar
  32. Su, J. Y., Tang, J. H., Wang, C. H., and Yang, J. T. (2013). “A numerical investigation on the ground effect of a flapping-flying bird.” Phys Fluids, Vol. 25, No. 9, pp. 093101, DOI: 10.1063/1.4819503.CrossRefGoogle Scholar
  33. Tang, J. H., Su, J. Y., Wang, C. H., and Yang, J. T. (2013). “Numerical investigation of the ground effect for a small bird.” J Mech., Vol. 29, No. 3, pp. 433–441, DOI: 10.1017/jmech.2013.18.CrossRefGoogle Scholar
  34. Teng, W. U. and Ahsan Kareem. (2012). “An overview of Vortexinduced Vibration (VIV) of bridge decks.” Front. Struct. Civ. Eng., Vol. 6, No. 4, pp. 335–347, DOI: 10.1007/s11709-012-0179-1.Google Scholar
  35. Wu, T. and Kareem, A. (2013). “Vortex-induced vibration of bridge decks: Volterra series-based model.” J. Eng. Mech., Vol. 139, No. 2, pp. 1831–1843, DOI: 10.1061/(ASCE)EM.1943-7889.0000628.CrossRefGoogle Scholar
  36. Xu, F., Ying, X., Li, Y., and Zhang, M. (2016). “Experimental explorations of the torsional vortex-induced vibrations of a bridge deck.” J. Bridge Eng., Vol. 21, No. 12, pp. 04016093, DOI: 10.1061/(ASCE)BE.1943-5592.0000941.CrossRefGoogle Scholar
  37. Yang, W. and Yang, Z. G. (2014). “Aerodynamic investigation on design of tiltable end plate flow wingcraft.” Aircraft Enginnering and Aeros, Vol. 84, No. 1, pp. 4–12, DOI: 10.1108/00022661211194933.Google Scholar
  38. Yang, M., Yang, W., and Yang, Z. G. (2015). “Wind tunnel test of groud viscous effects on wing aerodynamics.” Acta Aerodynamica Sinica, Vol. 33, No. 1, pp. 82–86, DOI: 10.7638/kqdlxxb-2013.0002.MathSciNetGoogle Scholar
  39. Yang, Y., Zhou, R., Ge, Y., and Zhang, L. (2016). “Experimental studies on VIV performance and countermeasures for twin-box girder bridges with various slot width ratios.” Journal of Fluids and Structures, Vol. 66, pp. 476–489, DOI: 10.1016/j.jfluidstructs.2016.08.010.CrossRefGoogle Scholar
  40. Yuan, W., Laima, S., Chen, W., Li, H., and Hu, H. (2017). “Investigation on the vortex-and-wake-induced vibration of a separated-box bridge girder.” Journal of Fluids and Structures, Vol. 70, pp. 145–161, DOI: 10.1016/j.jfluidstructs.2017.01.015.CrossRefGoogle Scholar
  41. Zhou, S., Hua, X. G., Chen, Z. Q., and Chen, W. (2017). “Experimental investigation of correction factor for VIV amplitude of flexible bridges from an aeroelastic model and its 1:1 section model.” Engineering Structures, Vol. 141, pp. 263–271, DOI: 10.1016/j.engstruct.2017.03.023.CrossRefGoogle Scholar
  42. Zhou, Z., Yang, T., Ding, Q., and Ge, Y. (2015). “Mechanism on suppression in vortex-induced vibration of bridge deck with long projecting slab with countermeasures.” Wind & Structures, Vol. 20, No. 5, pp. 643–660, DOI: 10.12989/was.2015.20.5.643.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Disaster Reduction in Civil EngineeringTongji UniversityShanghaiChina
  2. 2.College of Urban Construction and Safety EngineeringShanghai Institute of TechnologyShanghaiChina

Personalised recommendations