Advertisement

KSCE Journal of Civil Engineering

, Volume 23, Issue 9, pp 3753–3763 | Cite as

Experimental Investigation of Soil — Structure — Pipe Interaction

  • Selçuk BildikEmail author
  • Mustafa Laman
Geotechnical Engineering
  • 41 Downloads

Abstract

In this study the stress behavior of buried pipes in cohesionless soil was investigated experimentally. The parameters investigated in the laboratory tests include embedment ratio of pipe, horizontal distance of pipe to footing and the position of pipe. Hoop stresses at four positions on the borders of the pipes were measured by strain gauges. The results indicated that a significant increase in bearing capacities and decrease in pipe hoop stress when embedment ratio of pipe and horizontal distance of pipe to footing were increased. Based on the results of the laboratory model tests, the embedment ratio of pipe and the position of pipe are the main parameters that affect the hoop stresses on pipe.

Keywords

buried pipes bearing capacity laboratory tests hoop stress pipe location 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Not Applicable

References

  1. Abuhajar, O., Naggar, H. E., and Newson, T. (2016). “Numerical modeling of soil and surface foundation pressure effects on buried box culvert behavior.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 142, No. 12, DOI:  https://doi.org/10.1061/(ASCE)GT.1943-5606.0001567.
  2. Adams, D. N., Muindi, T., and Selig E. T. (1989). “Polyethylene pipe under high fill.” Transportation Research Record, No. 1231, pp. 88–95.Google Scholar
  3. ASTM D 4253-00 (2000). Standard test methods for maximum index density and unit weight of soils using a vibratory table, D 4253-00, ASTM International, West Conshohocken, PA, USA.Google Scholar
  4. ASTM D 4254-00 (2000). Standard test methods for minimum index density and unit weight of soils and calculation of relative density, D 4254-00, ASTM International, West Conshohocken, PA, USA.Google Scholar
  5. Bildik, S. and Laman, M. (2015). “Experimental investigation of the effects of pipe location on the bearing capacity.” Geomechanics and Engineering, Vol. 8, No. 2, pp. 221–235, DOI:  https://doi.org/10.12989/gae.2015.8.2.221.CrossRefGoogle Scholar
  6. Brachman, R. W. I. (1999). Structural performance of leachete collection pipes, PhD Thesis, University of Western Ontario, ON, Canada.Google Scholar
  7. Burns, J. Q. and Richard., R. M. (1964). “Attenuation of stresses for buried cylinders.” Proc. of Soil Symposium on Soil-Structure Interaction, Univ. of Arizona, AZ, USA, pp. 379–392.Google Scholar
  8. Cameron, D. A. (2005). Analysis of buried flexible pipes in granular backfill subjected to construction traffic, PhD Thesis, University of Sydney, Sydney, Australia.Google Scholar
  9. Cho, S. (2003). Behavior of flexible plastic pipes with flowable backfill in trench conditions, PhD Thesis, University of Houston, TX, USA.Google Scholar
  10. Guha, I., Randolph, M. F., and White, D. J. (2016). “Evaluation of elastic stiffness parameters for pipeline-soil interaction.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 142, No. 6, DOI:  https://doi.org/10.1061/(ASCE)GT.1943-5606.0001466.
  11. Hoeg, K. (1966). Pressure distribution on underground structural cylinders, Technical Report No. AFWL TR 65–98, Kirtland Air Force Base, NM, USA.Google Scholar
  12. Hurd, J. O. (1986). “Field Performance of corrugated polyethylene pipe culverts in ohio.” Journal of Transportation Research Board, Vol. 1087, pp. 1–6.Google Scholar
  13. Jeyapalan, J. K. and Hamida, H. B. (1988). “Comparison of german to marston design method.” Journal of Transportation Engineering, Vol. 114, No. 4, pp. 420–435.CrossRefGoogle Scholar
  14. Kawabata, T., Uchida, K., Ling, H. I., Nakase, H., Sawada, Y., Hirai, T., and Saito, K. (2004). “Lateral loading tests for buried pipe with geosynthetics.” Proc. GeoTrans, ASCE, Los Angeles, CA, USA, pp. 609–616.Google Scholar
  15. Kawabata, T., Ling, H. I., Mohri, Y., and Shoda, D. (2006). “Behavior of buried flexible pipe under high fills and design implications.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 10, pp. 1354–1359, DOI:  https://doi.org/10.1061/(ASCE)GT.1943-5606.0001466.CrossRefGoogle Scholar
  16. Keskin, M. S. and Laman, M. (2013). “Model studies of bearing capacity of strip footing on sand slope.” KSCE Journal of Civil Enginering, KSCE, Vol. 17, No. 4, pp. 699–711, DOI:  https://doi.org/10.1007/s12205-013-0406-x.CrossRefGoogle Scholar
  17. Masada, T., Sargand, S., Hazen, G., Schehl, D., Moran, A., and Altarawneh, B. (2002). Field verification of structural performance of thermoplastic pipe under deep backfill conditions, Final Report, Ohio Department of Transportation, OH, USA.Google Scholar
  18. Moser, A. P. and Folkman, S. (2008). Buried pipe design, McGraw-Hill, New York, NY, USA.Google Scholar
  19. Naggar, H. E., Turan, A., and Valsangkar, A. (2015). “Earth pressure reduction system using geogrid-reinforced platform bridging for buried utilities.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 141, No. 6, DOI:  https://doi.org/10.1061/(ASCE)GT.1943-5606.0001307.
  20. Robert, D. J., Soga, K., O’Rourke, T. D., and Sakanoue, T. (2016). “Lateral load-displacement behavior of pipeline in unsaturated sands.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 142, No. 11, DOI:  https://doi.org/10.1061/(ASCE)GT.1943-5606.0001504.
  21. Sargand, S. M., Tarawneh., T. B., and Gruver., D. (2005). “Field performance and analysis of large diameter high density polyethylene pipe under deep soil fill.” ASCE J. Geotech. Eng., Vol. 131, No. 1, pp. 39–51. DOI:  https://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(39).CrossRefGoogle Scholar
  22. Selig, E. T. (1990). Soil properties for plastic pipe installations, STP 1093, ASTM International, West Conshohocken, PA, USA, DOI:  https://doi.org/10.1520/STP42118S CrossRefGoogle Scholar
  23. Schaefer, V. R., Suleiman, M. T., White, D. J., Swan, C., and Jensen, K. (2005). Utility cut repair techniques - Investigation of improved cut repair techniques to reduce settlement in repaired areas, Final Report Iowa Highway Research Project TR-503, Center for Transportation Research and Education, Iowa State University, IA, USA.Google Scholar
  24. Selig, E. T., DiFrancesco, L. C., and McGrath, T. J. (1993). Laboratory tests of buried pipe in hoop compression, STP 1222, ASTM International, West Conshohocken, PA, USA, pp. 119–132.Google Scholar
  25. Suleiman, M. T. (2002). Behavior of buried flexible pipes, PhD Thesis, Iowa State University, IA, USA.Google Scholar
  26. Spangler, M. G. (1941). Structural design of flexible pipe culverts, Bulletin No 153, Iowa Engineering Experiment Station, IA, USA.Google Scholar
  27. Talesnick, M. L., Xia, H. W., and Moore, I. D. (2011). “Earth pressure measurements on buried HDPE pipe.” Geotechnique, Vol. 61, No. 9, pp. 721–732, DOI:  https://doi.org/10.1680/geot.8.P.048.CrossRefGoogle Scholar
  28. Wang, F., Han, J., Corey, R., Parsons, R. L., and Sun, X. (2017). “Numerical modeling of installation of steel-reinforced high-density polyethylene pipes in soil.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 143, No. 11, DOI:  https://doi.org/10.1061/(ASCE)GT.1943-5606.0001784.
  29. Won, M. S., Ling, H. I., and Kim, Y. S. (2004). “A study of the deformation of flexible pipes buried under model reinforced sand.” KSCE Journal of Civil Engineering, KSCE, Vol. 8, No. 4, pp. 377–385, DOI:  https://doi.org/10.1007/BF02829161.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers 2019

Authors and Affiliations

  1. 1.Dept. of Civil EngineeringNisantasi UniversityIstanbulTurkey
  2. 2.Dept. of Civil EngineeringHome Office Ulusoy Camlica PlazaIstanbulTurkey

Personalised recommendations