KSCE Journal of Civil Engineering

, Volume 23, Issue 2, pp 719–728 | Cite as

Optimum Criss Crossing Cables in Multi-span Cable-stayed Bridges using Genetic Algorithms

  • Hiram Arellano
  • Dante Tolentino
  • Roberto Gómez
Structural Engineering


A multi-objective optimization approach in order to find the optimal cable overlap length in multi-span cable-stayed bridges with criss-cross cables is presented. The multi-objective optimization is solved by considering three objectives: 1) the cost of the cable system, 2) the displacement at the top of the pylon and 3) the alternate live load on the bridge. An unconventional criss-cross cable system configuration in which cables criss-cross at the center of intermediate spans is used for a bridge with five spans and four pylons. Taking into account both the cable overlap length and the different occurrences of alternate live load, the set of optimal solutions was obtained by the use of genetic algorithms. Results indicate that the optimal cable overlap length corresponds to three criss-crossing cables that corresponds to 0.28 times the length of the central span. Research on multi-span cable-stayed bridges with criss-cross cables allows the analysis of another solution for the problem of stabilizing the displacement of intermediate pylons in this kind of bridge.


alternate live loads criss-cross cables genetic algorithm multi-objective optimization multi-span cable-stayed bridges 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AASHTO Standard (2002). Standard specifications for highway bridges (17 th edition), American Association of State Highway and Transportation Officials, USA.Google Scholar
  2. Barr, A. S., Sarin, S. C., and Bishara A. G. (1989). “Procedure for structural optimization.” ACI Structural Journal, ACI, Vol. 86, pp. 524–531, DOI: 10.14359/3268.Google Scholar
  3. Bond, D. (1975). “An examination of the automated design of prestressed concrete bridge decks by computer.” Proceedings of The Institution of Civil Engineers-Engineering Sustainability, ICE Publishing, Vol. 59, pp. 669–697, DOI: 10.1680/iicep.1975.3634.Google Scholar
  4. Cai, H. and Aref, A. J. (2015). “A genetic algorithm-based multi-objective optimization for hybrid fiber reinforced polymeric deck and cable system of cable-stayed bridges.” Structural and Multidisciplinary Optimization, Springer, Vol. 52, No. 3, pp. 583–594, DOI: 10.1007/s00158-015-1266-4.CrossRefGoogle Scholar
  5. Chen, D. W., Au, F. T. K., Tham, L. G., and Lee, P. K. K. (2000). “Determination of initial cable forces in prestressed concrete cablestayed bridges for given desing deck profiles using the force equilibrium method.” Computers & Structures, Elsevier, Vol. 74, No. 1, pp. 1–9, DOI: 10.1016/S0045-7949(98)00315-0.CrossRefGoogle Scholar
  6. Cid Montoya, M., Hernandez, S., and Nieto, F. (2018). “Shape optimization of streamlined decks of cable-stayed bridges considering aeroelastic and structural constraints.” Journal of Wind Engineering & Industrial Aerodynamics, Elsevier, Vol. 177, pp. 429–455, DOI: 10.1016/j.jweia.2017.12.018.CrossRefGoogle Scholar
  7. Coley, D. (1999). An introduction to genetic algorithms for scientists and engineers, World Scientific, Singapore, pp. 22–26.CrossRefGoogle Scholar
  8. Curran, P. (2015). “Queensferry crossing: Role of concrete in the desing and execution of the project. Multi-Span Large Bridges.” International Conference on Multi-Span Large Bridges, Pedro Pacheco and Filipe Magalhaes Editors, Taylor and Francis group, Porto, Portugal, pp. 179–186.Google Scholar
  9. Deb, K., Pratap, A., and Agarwal, S. (2002). “A fast and elitist multiobjective genetic algorithm NSGA-II.” Evolutionary Computation, IEEE Xplore, Vol. 6, No. 2, pp. 182–197, DOI: 10.1109/4235.996017.CrossRefGoogle Scholar
  10. Fabbrocino, F., Modano, M., Farina, I., Carpentieri, G., and Fraternali, F. (2017). “Optimal prestress design of composite cable-stayed bridges.” Composite Structures, Elsevier, Vol. 169, pp. 167–172, DOI: 10.1016/j.compstruct.2016.09.008.CrossRefGoogle Scholar
  11. Goldberg, D. and Deb, K. (1991). “A comparative analysis of selection schemes used in genetic algorithms.” Foundations of Genetic Algorithms, Elsevier, Vol. 1, pp. 69–93, DOI: 10.1016/B978-0-08-050684-5.50008-2.MathSciNetGoogle Scholar
  12. Hare, W., Nutini, J., and Tesfamariam, S. (2013). “Survey of non-gradient optimization methods in structural engineering.” Advances in Engineering Software, Elsevier, Vol. 59, pp. 19–28, DOI: 10.1016/j.advengsoft.2013.03.001.CrossRefGoogle Scholar
  13. Hassan, M. M. (2013). “Optimization of stay cables in cable-stayed bridges using finite element, genetic algorithm, and B-spline combined technique.” Engineering Structures, Elsevier, Vol. 49, pp. 643–654, DOI: 10.1016/j.engstruct.2012.11.036.CrossRefGoogle Scholar
  14. Holgate, A. (1997). The art of structural engineering: The work of Jörg Schlaich and his team, Edition Axel Menges, Fellbach, Deutschland, pp. 294.Google Scholar
  15. Lounis, Z. and Cohn, M. Z. (1993). “Optimization of precast prestressed concrete bridge girder Systems.” Precast/Prestressed Concrete Institute PCI, PCI, Vol. 38, pp. 60–78, DOI: 10.15554/pcij.07011993.60.78Google Scholar
  16. Lute, V., Upadhyay, A., and Singh, K. (2011). “Genetic algorithmsbased optimization of cable stayed bridges.” Jounal of Software Engineering and Applications, Scientific Research Publishing Inc, Vol. 4, pp. 571–578, DOI: 10.4236/jsea.2011.410066.CrossRefGoogle Scholar
  17. Martínez-Martín, F. J., González-Vidosa, F., Hospitaler, A., and Yepes, V. (2013). “A parametric study of optimum tall piers for railway bridge viaducts.” Structural Engineering and Mechanics, Techno-Press, Vol. 45, pp. 723–740, DOI: 10.12989/sem.2013.45.6.723.CrossRefGoogle Scholar
  18. Martins, A., Simões, L., and Negrão, J. (2016). “Optimum design of concrete cable-stayed bridges with prestressed decks.” International Journal for Computational Methods in Engineering Science and Mechanics, Taylor & Francis, Vol. 17, No. 5–6, pp. 339–349, DOI: 10.1080/15502287.2016.1231237.MathSciNetCrossRefGoogle Scholar
  19. Moradi, S. and Alam, M. (2017). “Multi-criteria optimization of lateral load-drift response of posttensioned steel beam-column connections.” Engineering Structures, Elsevier, Vol. 130, pp. 180–197, DOI: 10.1016/j.engstruct.2016.10.005.CrossRefGoogle Scholar
  20. Poirier, J., Vel, S., and Caccese, V. (2013). “Multi-objective optimization of laser-welded steel sandwich panels for static loads using a genetic algorithm.” Engineering Structures, Elsevier, Vol. 49, pp. 508–524, DOI: 10.1016/j.engstruct.2012.10.033.CrossRefGoogle Scholar
  21. Rabbat, B. G. and Russell, H. G. (1982). “Optimized sections for precast prestressed bridge Girders.” Precast/Prestressed Concrete Institute PCI, PCI, Vol. 27, pp. 88–108, DOI: 10.15554/pcij.07011982.88.106Google Scholar
  22. Rana, S., Islam, N., Ahsan, R., and Ghani, S. N. (2013). “Application of evolutionary operation to the minimum cost design of continuous prestressed concrete bridge structure.” Engineering Structures, Elsevier, Vol. 46, pp. 38–48, DOI: 10.1016/j.engstruct.2012.07.017.CrossRefGoogle Scholar
  23. Sanchez, J. (2001). JESA Ingeniería S.A de C.V, México City, personal communication.Google Scholar
  24. Secretaria de Comunicaciones y Transportes SCT. (2001). Normativa para la infraestructura del transporte. Secretaria de Comunicaciones y Transportes, Instituto Mexicano del Transporte IMT, México. (in Spanish)Google Scholar
  25. Segal, E., Rhode-Barbarigos, L., Adriaenssens, S., and Coelho, F. (2015). “Multi-objective optimization of polyester-rope and steel-rope suspended footbridges.” Engineering Structures, Elsevier, Vol. 99, pp. 559–567, DOI: 10.1016/j.engstruct.2015.05.024.CrossRefGoogle Scholar
  26. Song, C., Xiao, R., and Sun, B. (2018) “Optimization of cable pretension forces in long-span cable-stayed bridges considering the counterweight.” Engineering Structures, Elsevier, Vol. 172, pp. 919–928, DOI: 10.1016/j.engstruct.2018.06.061.CrossRefGoogle Scholar
  27. Srinivas, V. and Ramanjaneyulu, K. (2007). “An integrated approach for optimum design of bridge decks using genetic algorithms and artificial neural networks.” Advances in Engineering Software, Elsevier, Vol. 38, pp. 75–87, DOI: 10.1016/j.advengsoft.2006.09.016.Google Scholar
  28. Wills, J. (1973). Mathematical optimization procedure and its application to the design of bridge structures, Transportation and Road Research Laboratory, Report LR555, Wokingham, UK.Google Scholar
  29. Yu, C. H., Das Gupta, N. C., and Paul, H. (1986). “Optimization of prestressed concrete bridge girders.” Optimization and Engineering, Taylor & Francis, Vol. 10, pp. 13–24, DOI: 10.1080/03052158608902524.CrossRefGoogle Scholar
  30. Zhong, J., Hu, Z., Yuan, W., and Chen, L. (2018). “System-based probabilistic optimization of fluid viscous dampers equipped in cable-stayed bridges.” Advances in Structural Engineering, SAGE Publishing, DOI: 10.1177/1369433218756429.Google Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hiram Arellano
    • 1
  • Dante Tolentino
    • 2
  • Roberto Gómez
    • 1
  1. 1.Institute of EngineeringUniversidad Nacional Autónoma de MéxicoMéxico CityMexico
  2. 2.Sección de Estudios de Posgrado e Investigación, ESIA ZacatencoInstituto Politécnico NacionalMéxico CityMexico

Personalised recommendations