KSCE Journal of Civil Engineering

, Volume 23, Issue 2, pp 534–540 | Cite as

Element Search Methods for Large Deformation Finite Element Simulation in Geotechnical Fields

  • Youngho KimEmail author
  • U. Geun Jang
Geotechnical Engineering


This paper reports the element search methods for the interpolation procedure of a large deformation finite element simulation. Special attention is given to a virtual mesh container technique, which can boost the computational efficiency. Benchmark problems of spudcan penetration are analysed to evaluate the performances of various element search methods. The results show that the element search method with the virtual mesh container can significantly reduce the computation cost. However, if the container size is too small, interpolation failure may occur. To guarantee stable mapping, a simple approach for determining an optimised virtual mesh container size is proposed.


large deformation finite element element search method interpolation virtual mesh container 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABAQUS (2012). “Analysis users’ manual (version 6.12).” Dassault Systèmes Simulia, Inc.Google Scholar
  2. Boroomand, B. and Zienkiewicz, O. C. (1997). “An improved REP recovery and the effectivity robustness test.” International Journal for Numerical Methods in Engineering, Vol. 40, No. 17, pp. 3247–3277, DOI: 10.1002/(SICI)1097-0207(19970915)40:17<3247::AIDNME211>3.0.CO;2-Z.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Chatterjee, S., Gourvenec, S., and White, D. J. (2014). “Assessment of the consolidated breakout response of partially embedded subsea pipelines.” Géotechnique, Vol. 64, No. 5, pp. 391–399, DOI: 10.1680/geot.13.P.215.CrossRefGoogle Scholar
  4. Hu, Y. and Randolph, M. F. (1998a). “A practical numerical approach for large deformation problems in soil.” International Journal for Numerical Analytical Methods in Geomechanics, Vol. 22, No. 5, pp. 327–250, DOI: 10.1002/(SICI)1096-9853(199805)22:5<327::AIDNAG920>3.0.CO;2-X.CrossRefzbMATHGoogle Scholar
  5. Hu, Y. and Randolph, M. F. (1998b). “H-adaptive FE analysis of elastoplastic non-homogeneous soil with large deformation.” Computers and Geotechnics, Vol. 23, No. 1, pp. 61–83, DOI: 10.1016/S0266-352X(98)00012-3.CrossRefGoogle Scholar
  6. Hu, Y. and Randolph, M. F. (2002). “Bearing capacity of caisson foundations on normally consolidated clay.” Soils and Foundations, Vol. 42, No. 5, pp. 71–77, DOI: 10.3208/sandf.42.5_71.CrossRefGoogle Scholar
  7. Krause, R. and Rank, E. (1996). “A fast algorithm for point-location in a finite element mesh.” Computing, Vol. 57, No. 1, pp. 49–62, DOI: 10.1007/BF02238357.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Mahmoodzadeh, H., Randolph, M. F., and Wang, D. (2014). “Numerical simulation of piezocone dissipation test in clays.” Géotechnique, Vol. 64, No. 8, pp. 657–666, DOI: 10.1680/geot.14.P.011.CrossRefGoogle Scholar
  9. Mahmoodzadeh, H., Wang, D., and Randolph, M. F. (2015). “Interpretation of piezoball dissipation testing in clay.” Géotechnique, Vol. 65, No. 10, pp. 831–842, DOI: 10.1680/jgeot.14.P.213.CrossRefGoogle Scholar
  10. Nazem, M, Carter, J. P., Airey, D. W., and Chow, S. H. (2012). “Dynamic analysis of a smooth penetrometer free-falling into uniform clay.” Géotechnique, Vol. 62, No. 10, pp. 893–905, DOI: 10.1680/geot.10.P.055.CrossRefGoogle Scholar
  11. Nazem, M., Sheng, D., and Carter, J. P. (2006). “Stress integration and mesh refinement for large deformation in geomechanics.” International Journal for Numerical Methods in Engineering, Vol. 65, No. 7, pp. 1002–1027, DOI: 10.1002/nme.1470.CrossRefzbMATHGoogle Scholar
  12. Ragni, R., Wang, D., Masin, D., Bienen, B., Cassidy, M. J., and Stanier, S.A. (2016). “Numerical modelling of the effects of consolidation on jack-up spudcan penetration.” Computers and Geotechnics, Vol. 78, pp. 25–37, DOI: 10.1016/j.compgeo.2016.05.002.CrossRefGoogle Scholar
  13. Randolph, M. F., Wang, D., Zhou, H., Hossain, M. S., and Hu, Y. (2008). “Large deformation finite element analysis for offshore applications.” Proc. 12th Int. Conf. of IACMAG 2008, Goa, India, pp. 3307–3318.Google Scholar
  14. Silva, G., Le Riche, R., Molimard, J., and Vautrin, A. (2009). “Exact and efficient interpolation using finite elements shape functions.” European Journal of Computational Mechanics, Vol. 18, Nos. 3–4, pp. 307–331, DOI: 10.3166/ejcm.18.307-331.CrossRefzbMATHGoogle Scholar
  15. Stewart, D. P. (1992). Lateral loading of piled bridge abutments due to embankment construction, PhD Thesis, The University of Western Australia, Perth, Australia.Google Scholar
  16. Walker, J. and Yu, H. S. (2006). “Adaptive finite element analysis of cone penetration in clay.” Acta Geotechnica, Vol. 1, No. 1, pp. 43–57, DOI: 10.1007/s11440-006-0005-9.CrossRefGoogle Scholar
  17. Wang, D. and Bienen, B. (2016). “Numerical investigation of penetration of a large diameter footing into normally consolidated kaolin clay with a consolidation phase.” Géotechnique, Vol. 66, No. 11, pp. 947–952, DOI: 10.1680/jgeot.15.P.048.CrossRefGoogle Scholar
  18. Wang, D., Bienen, B., Nazem, M., Tian, Y., Zheng, J., Pucker, T., and Randolph, M. F. (2015). “Large deformation finite element analyses in geotechnical engineering.” Computers and Geotechnics, Vol. 65, pp. 104–114, DOI: 10.1016/j.compgeo.2014.12.005.CrossRefGoogle Scholar
  19. Wang, D., Hu, Y., and Randolph, M. F. (2010). “Three-dimensional large deformation finite element analysis of plate anchor in uniform clay.” J. Geotech Geoenviron Eng., Vol. 136, No. 2, pp. 355–365, DOI: 10.1061/(ASCE)GT.1943-5606.0000210.CrossRefGoogle Scholar
  20. Wang, D., Hu, Y., and Randolph, M. F. (2011). “Keying of rectangular plate anchors in normally consolidated clays.” J. Geotech. Geoenviron. Eng., Vol. 137, No. 12, pp. 1244–1253, DOI: 10.1061/(ASCE) GT.1943-5606.0000477.CrossRefGoogle Scholar
  21. Wang, D., Merifield, R. S., and Gaudin, C. (2013). “Uplift behaviour of helical anchors in clay.” Can Geotech J., Vol. 50, No. 6, pp. 575–584, DOI: 10.1139/cgj-2012-0350.CrossRefGoogle Scholar
  22. Wang, D., White, D. J., and Randolph, M. F. (2010). “Large deformation finite element analysis of pipe penetration and large-amplitude lateral displacement.” Can Geotech J., Vol. 47, No. 8, pp. 842–856, DOI: 10.1139/T09-147.CrossRefGoogle Scholar
  23. Yu, L., Liu, J., Kong, X., and Hu, Y. (2011). “Three-dimensional large deformation FE analysis of square footings in two-layered clays.” J. Geotech. Geoenviron. Eng., Vol. 137, No. 1, pp. 52–58, DOI: 10.1061/(ASCE)GT.1943-5606.0000400.CrossRefGoogle Scholar
  24. Zienkiewicz, O. C. and Zhu, J. Z. (1993). “The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique.” International Journal for Numerical Methods in Engineering, Vol. 33, No. 7, pp. 1331–1364, DOI: 10.1002/nme.1620330702.CrossRefzbMATHGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Offshore Foundation Systems (COFS)The University of Western AustraliaCrawleyAustralia
  2. 2.Division of Polar Earth-System SciencesKorea Polar Research InstituteIncheonKorea

Personalised recommendations