KSCE Journal of Civil Engineering

, Volume 23, Issue 2, pp 777–787 | Cite as

Multi-temporal Nonlinear Regression Method for Landsat Image Simulation

  • Hye Jin Kim
  • Dae Kyo Seo
  • Yang Dam Eo
  • Min Cheol Jeon
  • Wan Yong Park
Surveying and Geo-Spatial Information Engineering


Optical remote sensing is limited in its potential for acquiring time-series images due to the restricted weather conditions in which it may be used. The proposed method simulates a Landsat image at a specific time and applies a multiple nonlinear regression equation that provides a higher degree of correlation with the observed data distribution than the commonly used multiple linear regression equation. In this study, Multivariate Adaptive Regression Splines (MARS) and Gaussian Process Regression (GPR) were considered as methods of multiple nonlinear regression. In addition to weather, environmental parameters such as temperature and humidity were added to analyze the input parameters in the regression process. Here, the GPR method of nonlinear regression results show significant improvement in Landsat image simulation. Furthermore, regardless of the season, simulation results using multiple parameter combinations showed the highest correlation with the reference images when temperature (ground), humidity, precipitation, visibility distance, Normalized Difference Vegetation Index (NDVI), and three types of radiation were applied. It was confirmed that introduction of Moderate Resolution Imaging Spectroradiometer (MODIS) products had little positive effects on the results. Thus, the GPR method defined here provides the best simulation results by employing multiple parameters in the calculation.


multi linear regression multivariate adaptive regression splines Gaussian process regression Landsat image simulation weather environmental parameters MODIS products 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bruno, D. E., Barca, E., Goncalves, R. M., Lay-Ekuakille, A., Maggi, S., and Passarella, G. (2016). “Evolutionary polynomial regression model for the prediction of coastal dynamics.” Second Edition Workshop on Environmental Instrumentation and Measurements, IMEKO-TC19, Reggio Calabria, Italy, pp. 6–11.Google Scholar
  2. Chen, J., Per, J., Masayuki, T., Zhihui, G., Bunkei, M., and Lars, E. (2004). “A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter.” Remote Sensing of Environment, Elsevier, Vol. 91, Nos. 3–4, pp. 332–344, DOI: 10.1016/j.rse.2004.03.014.CrossRefGoogle Scholar
  3. Friedman, J. H. (1991). “Multivariate adaptive regression splines.” The Annals of Statistics, JSTOR, Vol. 19, No. 1, pp. 1–67.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Gao, F., Masek, J., Schwaller, M., and Hall, F. (2006). “On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance.” IEEE Transactions on Geoscience and Remote Sensing, IEEE, Vol. 44, No. 8, pp. 2207–2218, DOI: 110.1109/TGRS.2006.872081.CrossRefGoogle Scholar
  5. Giannico, C. (2007). “Remote sensing of vegetation in the Calabrian region.” Acta Astronautica, Elsevier, Vol. 60, No. 2, pp. 119–131, DOI: 10.1016/j.actaastro.2006.07.003.CrossRefGoogle Scholar
  6. Grasso, L. D., Sengupta, M., Dostalek, J. F., Brummer, R., and Demaria, M. (2008). “Synthetic satellite imagery for current and future environmental satellites.” International Journal of Remote Sensing, Taylor & Francis Online, Vol. 29, No. 15, pp. 4373–4384, DOI: 10.1080/01431160801891820.CrossRefGoogle Scholar
  7. Gustau, C. V., Jochem, V., Jordi M. M., Valero, L., Fernando, M. J., and Jose, G. D. (2016). “A Survey on Gaussian processes for Earthobservation data analysis: A comprehensive investigation.” IEEE Geoscience and Remote Sensing Magazine, IEEE, Vol. 4, No. 2, pp. 58–78, DOI: 10.1109/MGRS.2015.2510084.CrossRefGoogle Scholar
  8. Huang, C. and Townshend, J. R. G. (2003). “A stepwise regression tree for nonlinear approximation: applications to estimating subpixel land cover.” International Journal of Remote Sensing, Taylor & Francis Online, Vol. 24, No. 1, pp. 75–90, DOI: 10.1080/01431160110115032.CrossRefGoogle Scholar
  9. Hultquist, C., Chen, G., and Zhao, K. (2014). “Comparison of Gaussian process regression, random forest regression and support vector regression for burn severity assessment in diseased forests.” Remote Sensing Letters, Taylor & Francis Online, Vol. 5, No. 8, pp. 723–732, DOI: 10.1080/2150704X.2014.963733.CrossRefGoogle Scholar
  10. Jensen, J. R. (2003). Remote sensing of the environment: An Earth resource perspective (2nd edition), Prentice Hall, New Jersey, pp. 381–395.Google Scholar
  11. Kim, S. W., Eo, Y. D., Lee, B. K., Jang, I. W., and Han, S. H. (2013). “Remote sensed image simulation methodology.” Journal of Next Generation Information Technology, JNIT Journals, Vol. 4, No. 8, pp. 111–117.Google Scholar
  12. Kumar, L., Skidmore, A. K., and Knowles, E. (1997). “Modelling topographic variation in solar radiation in a GIS environment.” International Journal of Geographical Information Science, Taylor & Francis Online, Vol. 11, No. 5, pp. 475–497, DOI: 10.1080/136588197242266.CrossRefGoogle Scholar
  13. La, H. P., Eo, Y. D., Lee, S. B., Park, W. Y., and Koo, J. H. (2015). “Image simulation from multitemporal Landsat images.” GIScience and Remote Sensing, Taylor & Francis Online, Vol. 52, No. 5, pp. 586–608, DOI: 10.1080/15481603.2015.1062676.Google Scholar
  14. Lee, M. H., Lee, S. B., Eo, Y. D., Kim, S. W., Woo, J. H., and Han, S. H. (2017a). “A comparative study on generating simulated Landsat NDVI images using data fusion and regression method—the case of the Korean Peninsula.” Environmental Monitoring and Assessment, Springer, Vol. 189, No. 7, pp. 1–13, DOI: 10.1007/s10661-017-6034-z.Google Scholar
  15. Lee, S. B., Park, W. Y., Eo, Y. D., Pyeon, M. W., Han, S. H., Yeon, S. H., and Lee, B. K. (2017b). “Analysis on the applicability of simulated image from SPOT 4 HRVIR image.” KSCE Journal of Civil Engineering, KSCE, Vol. 21, No. 4, pp. 1434–1442, DOI: 10.1007/s12205-016-0522-5.CrossRefGoogle Scholar
  16. Li, J., Menzel, W. P., Jhang, W. J., Sun, F. Y., Schmit, T. J., Gurka, J. J., and Weisz, E. (2004). “Synergistic use of MODIS and AIRS in a variational retrieval of cloud parameters.” Journal of Applied Meteorology, AMS Journals, Vol. 43, No. 11, pp. 1619–1634, DOI: 10.1175/JAM2166.1.CrossRefGoogle Scholar
  17. Park, W. Y. and Eo, Y. D. (2014). “Generation of simulated geospatial images from global elevation model and SPOT ortho-image.” Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Korea Science, Vol. 32, No. 3, pp. 217–223, DOI: 10.7848/ksgpc.2014.32.3.217.CrossRefGoogle Scholar
  18. Quiros, E., Felicisimo, A. M., and Cuartero, A. (2009). “Testing Multivariate Adaptive Regression Splines (MARS) as a method of land cover classification of TERRA-ASTER satellite images.” Sensors, MDPI, Vol. 2009, No. 11, pp. 9011–9028, DOI: 10.3390/s91109011.CrossRefGoogle Scholar
  19. Seidel, K. and Datcu, M. (1993). “Fusion of real and synthetic images for remote sensing scene understanding.” FRACTAL ’93 Kingston, UK, pp. 1–12.Google Scholar
  20. Stark, R. (1993). Synthetic image generator model: Application of specular and diffuse reflectivity components and performance evaluation in the visible region, MSc Thesis, Rochester Institute of Technology, New York, USA.Google Scholar
  21. Tuia, D., Verrelst, J., Alonso, L., Pérez-Cruz, F., and Camps-Valls, G. (2011). “Multioutput support vector regression for remote sensing biophysical parameter estimation.” IEEE Geoscience and Remote Sensing Letters, IEEE, Vol. 8, No. 4, pp. 804–808, DOI: 10.1109/LGRS.2011.2109934.CrossRefGoogle Scholar
  22. Walker, J. J., De Beurs, K. M., Wynne, R. H., and Gao, F. (2012). “Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology.” Remote Sensing of Environment, Elsevier, Vol. 117, pp. 381–393, DOI: 10.1016/j.rse.2011.10.014.CrossRefGoogle Scholar
  23. Zhang, W. and Goh, A. T. C. (2016). “Multivariate adaptive regression splines and neural network models for prediction of pile drivability.” Geoscience Frontiers, Elsevier, Vol. 7, No. 1, pp. 45–52, DOI: 10.1016/j.gsf.2014.10.003.CrossRefGoogle Scholar
  24. Zheng, D., John, R., Chen, J., Crow, T., Bresee, M., Le, Moine, J., and Ryu, S. R. (2004). “Estimating above ground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA.” Remote Sensing of Environment, Elsevier, Vol. 93, No. 3, pp. 402–411, DOI: 10.1016/j.rse.2004.08.008.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hye Jin Kim
    • 1
  • Dae Kyo Seo
    • 1
  • Yang Dam Eo
    • 1
  • Min Cheol Jeon
    • 1
    • 2
  • Wan Yong Park
    • 3
  1. 1.Dept. of Advanced Technology FusionKonkuk UniversitySeoulKorea
  2. 2.Advanced Technology Research Institute, LoDiCSSeoulKorea
  3. 3.Agency for Defense DevelopmentDaejeonKorea

Personalised recommendations