Advertisement

KSCE Journal of Civil Engineering

, Volume 23, Issue 2, pp 654–665 | Cite as

Investigation of the Dynamic Behavior of a Super High-rise Structure using RTK-GNSS Technique

  • Chunbao Xiong
  • Yanbo NiuEmail author
Structural Engineering
  • 27 Downloads

Abstract

Super high-rise structures have a significant deformation under ambient excitations such as earthquake and wind, which may lead to structural instability and even damage. To capture the dynamic characteristics of a super high-rise structure under construction (i.e., Tianjin 117 tower), Real Time Kinematic - Global Navigation Satellite Systems (RTK-GNSS) sensors are employed to derive the horizontal displacement of the structure. Considering the defects in measurement accuracy of RTK-GNSS sensors, a Type 1 Chebyshev high-pass digital filter is firstly employed and thus the output results are smoothed. Subsequently, based on the smoothed signals, the natural frequencies and the corresponding damping ratios are extracted via FFT (Fast Fourier Transform) and RDT-LDM (random decrement technique combined with logarithmic decrement method). It is found that the results from the field measurement coincide with the numerical simulation. Finally, the structural parameters are successfully obtained and illustrated graphically.

Keywords

super high-rise structure dynamic characteristics RTK-GNSS random decrement technique logarithmic decrement method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breuer, P., Chmielewski, T., Konopka, E., and Tarczynski, L. (2008). “The Stuttgart TV tower–displacement of the top caused by the effects of sun and wind.” Eng. Struct., Vol. 30, No. 10, pp. 2771–2781, DOI: 10.1016/j.engstruct.2008.03.008.CrossRefGoogle Scholar
  2. Brincker, R., Andersen, P., and Jacobsen, N. J. (2007). “Automated frequency domain decomposition for Operational Modal Analysis.” Proceedings of the 25 th SEM International Modal Analysis Conference, Orlando, Florida, USA, pp. 19–22.Google Scholar
  3. Brincker, R., Zhang, L., and Andersen, P. (2000). “Modal identification from ambient responses using frequency domain decomposition.” Proc 18 th Int. Modal Anal Conf. (IMAC), Kissimmee, FL, USA.Google Scholar
  4. Chan, W. S., Xu, Y. L., Ding, X. L., Xiong, Y. L., and Dai, W. J. (2006). “Assessment of dynamic measurement accuracy of GPS in three directions.” J. Surv. Eng. ASCE, Vol. 132, No. 3, pp. 108–117, DOI: 10.1061/(ASCE)0733-9453(2006)132:3(108).CrossRefGoogle Scholar
  5. Chen, J., Yan, S. X., and Zhang, M. S. (2014). “Vibration performance assessment of a long-span concrete floor using field measurements over a five-year period.” Adv. Struct. Eng., Vol. 17, No. 8, pp. 1145–1158, DOI: 10.1260/1369-4332.17.8.1145.CrossRefGoogle Scholar
  6. Chen, Q. J., Yuan, W. Z., Li, Y. C., and Cao, L. Y. (2013). “Dynamic response characteristics of super high-rise buildings subjected to long-period ground motions.” J. Cent. South Univ., Vol. 20, No. 5, pp. 1341–1353, DOI: 10.1007/s11771-013-1621-9.CrossRefGoogle Scholar
  7. Chopra, A. K. (1995). Dynamics of structures a primer, Earthquake Engineering Research Institute, pp. 1–126.Google Scholar
  8. Cole, H. A. (1971). Method and apparatus for measuring the damping characteristic of a structure, United State Patent 3 620 069.Google Scholar
  9. Cooper, J. E. (1996). “Extending the logarithmic decrement method to analyse two degree of freedom transient responses.” Mech. Syst. Signal Pr., Vol. 10, No. 4, pp. 497–500, DOI: 10.1006/mssp.1996.0034.CrossRefGoogle Scholar
  10. DiGiampaolo, E., Di Carlofelice, A., and Gregori, A. (2017). “An RFIDenabled wireless strain gauge sensor for static and dynamic structural monitoring.” IEEE Sens. J., Vol. 17, No. 2, pp. 286–294, DOI: 10.1109/JSEN.2016.2631259.CrossRefGoogle Scholar
  11. Elnabwy, M. T., Kaloop, M. R., and Elbeltagi, E. (2013). “Talkha steel highway bridge monitoring and movement identification using RTK-GPS technique.” Measurement, Vol. 46, No. 10, pp. 4282–4292, DOI: 10.1016/j.measurement.2013.08.014.CrossRefGoogle Scholar
  12. Elnashai, A. S. and Di Sarno, L. (2008). “Fundamentals of earthquake engineering.” Wiley and Sons, pp. 1–347.CrossRefGoogle Scholar
  13. Feldman, M. (1985). “Investigation of the natural vibrations of machine elements using the Hilbert transform.” Soviet Mach. Sci., Vol. 2, pp. 44–47.Google Scholar
  14. Flaga, A., Szulej, J., and Wielgos, P. (2008). “Comparison of determination methods of vibration’s damping coefficients for complex structures.” Budownictwo i Architektura, Vol. 3, pp. 53–61.Google Scholar
  15. Górski, P. (2015). “Investigation of dynamic characteristics of tall industrial chimney based on GPS measurements using random decrement method.” Eng. Struct., Vol. 83, pp. 30–49, DOI: 10.1016/j.engstruct.2014.11.006.CrossRefGoogle Scholar
  16. Han, H. Z., Wang, J., Meng, X. L., and Liu, H. (2016). “Analysis of the dynamic response of a long span bridge using GPS/accelerometer/anemometer under typhoon loading.” Eng. Struct., Vol. 122, pp. 238–250, DOI: 10.1016/j.engstruct.2016.04.041.CrossRefGoogle Scholar
  17. He, X. H., Hua, X. G., Chen, Z. Q., and Huang, F. L. (2011). “EMDbased random decrement technique for modal parameter identification of an existing railway bridge.” Eng. Struct., Vol. 33, No. 4, pp. 1348–1356, DOI: 10.1016/j.engstruct.2011.01.012.CrossRefGoogle Scholar
  18. Huang Z. F. and Gu, M. (2016). “Envelope random decrement technique for identification of nonlinear damping of tall buildings.” J. Struct. Eng., Vol. 142, No. 11, pp. 04016101, DOI: 10.1061/(ASCE) ST.1943-541X.0001582.CrossRefGoogle Scholar
  19. Ince, C. D. and Sahin, M. (2000). “Real-time deformation monitoring with GPS and Kalman Filter.” J. Earth, Planets Space, Vol. 52, No. 10, pp. 837–840, DOI: 10.1186/BF03352291.CrossRefGoogle Scholar
  20. Kaloop, M. R. (2012). “Bridge safety monitoring based-GPS technique: Case study Zhujiang Huangpu Bridge.” Smart Struct. Syst., Vol. 9, No. 6, pp. 473–487, DOI: 10.12989/sss.2012.9.6.473.CrossRefGoogle Scholar
  21. Kaloop, M. R. and Li, H. (2009). “Monitoring of bridge deformation using GPS technique.” KSCE J. Civ. Eng., Vol. 13, No. 6, pp. 423–431, DOI: 10.1007/s12205-009-0423-y.CrossRefGoogle Scholar
  22. Kim, Y. and Park, S. G. (2014). “Wet damping estimation of the scaled segmented hull model using the random decrement technique.” Ocean Eng., Vol. 75, pp. 71–80, DOI: 10.1016/j.oceaneng.2013.11.018.CrossRefGoogle Scholar
  23. Ku, C. J., Cermak, J. E., and Chou, L. S. (2007). “Random decrement based method for modal parameter identification of a dynamic system using acceleration responses.” J. Wind Eng. Ind. Aerodyn., Vol. 95, No. 6, pp. 389–410, DOI: 10.1016/j.jweia.2006.08.004.CrossRefGoogle Scholar
  24. Kwok, K. C. S., Tse, K. T., and Campbell, S. (2011). “Field measurements of dynamic properties of high-rise buildings.” Adv. Struct. Eng., Vol. 14, No. 6, pp. 1107–1128, DOI: 10.1260/1369-4332.14.6.1107.CrossRefGoogle Scholar
  25. Lee, J. J. and Shinozuka, M. (2006). “A vision-based system for remote sensing of bridge displacement.” NDT Int., Vol. 39, No. 5, pp. 425–431, DOI: 10.1016/j.ndteint.2005.12.003.CrossRefGoogle Scholar
  26. Li, Q. S. and Wu, J. R. (2007). “Time–frequency analysis of typhoon effects on a 79-storey tall building.” J. Wind Eng. Ind. Aerod., Vol. 95, No. 12, pp. 1648–1666, DOI: 10.1016/j.jweia.2007.02.030.CrossRefGoogle Scholar
  27. Li, Q. S. and Yi, J. (2016). “Monitoring of dynamic behaviour of supertall buildings during typhoons.” Struct. Infrastruct. E, Vol. 12, No. 3, pp. 289–311, DOI: 10.1080/15732479.2015.1010223.CrossRefGoogle Scholar
  28. Li, H. N., Yi, T. H., and Yi, X. D., and Wang G. X. (2007). “Measurement and analysis of wind-induced response of tall building based on GPS technology.” Adv. Struct. Eng., Vol. 10, No. 1, pp. 83–93, DOI: 10.1260/136943307780150869.CrossRefGoogle Scholar
  29. Li, X., Zhang, X., Ren, X., Fritsche, M., Wickert, J., and Schuh, H. (2015). “Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.” Sci. Rep., Vol. 5, pp. 8328–8341, DOI: 10.1038/srep08328.CrossRefGoogle Scholar
  30. Li, Q. S., Zhi, L. H., Yi, J., To, A., and Xie, J. M. (2014). “Monitoring of typhoon effects on a super-tall building in Hong Kong.” Control Health Monit., Vol. 21, No. 6, pp. 926–949, DOI: 10.1002/stc.1622.CrossRefGoogle Scholar
  31. Lin, C. S. and Tseng T. C. (2014). “Response-only modal identification using random decrement algorithm with time-varying threshold level.” J. Mech. Sci. Technol., Vol. 28, No. 6, pp. 2099–2109, DOI: 10.1007/s12206-014-0406-x.CrossRefGoogle Scholar
  32. Masri, S. F., Sheng, L. H., Caffrey, J. P., Nigbor, R. L., Wahbeh, M., and Abdel-Ghaffar A. M. (2004). “Application of a web-enabled realtime structural health monitoring system for civil infrastructure systems.” Smart Mater. Struct., Vol. 13, No. 6, pp. 1269–1283, DOI: 10.1088/0964-1726/13/6/001.CrossRefGoogle Scholar
  33. Meng, X., Dodson A. H., and Roberts, G. W. (2007). “Detecting bridge dynamics with GPS and triaxial accelerometers.” Eng. Struct., Vol. 29, No. 11, pp. 3178–3184, DOI: 10.1016/j.engstruct.2007.03.012.CrossRefGoogle Scholar
  34. Meo, M., Zumpano, G., Meng, X. L., Cosser, E., Roberts, G., and Dodson, A. (2006). “Measurements of dynamic properties of a medium span suspension bridge by using the wavelet transforms.” Mech. Syst. Signal Pr., Vol. 20, No. 5, pp. 1112–1133, DOI: 10.1016/j.ymssp.2004.09.008.CrossRefGoogle Scholar
  35. Niu, Y. B. and Xiong, C. B. (2018). “Analysis of the dynamic characteristics of a suspension bridge based on RTK-GNSS measurement combining EEMD and a wavelet packet technique.” Meas. Sci. Technol., Vol. 29, No. 8, pp. 085103, DOI: 10.1088/1361-6501/aacb47.CrossRefGoogle Scholar
  36. Nyquist, H. (1928). “Certain topics in telegraph transmission theory.” P. IEEE, Vol. 90, No. 2, pp. 280–305, DOI: 10.1109/T-AIEE.1928.5055024.CrossRefGoogle Scholar
  37. Sabato, A., Niezrecki, C., and Fortino, G. (2017) “Wireless MEMSbased accelerometer sensor boards for structural vibration monitoring: A review.” IEEE Sens. J., Vol. 17, No. 2, pp. 226–235, DOI: 10.1109/JSEN.2016.2630008.CrossRefGoogle Scholar
  38. Savitzky, A. and Golay, M. J. E. (1964). “Smoothing and differentiation of data by simplified least squares procedures.” Anal. Chem., Vol. 36, No. 8, pp. 1627–1639, DOI: 10.1021/ac60214a047.CrossRefGoogle Scholar
  39. Schafer, R. W. (2011). “What is a Savitzky–Golay filter?.” IEEE Signal Process. Mag., Vol. 28, No. 4, pp. 111–117, DOI: 10.1109/MSP.2011.941097.CrossRefGoogle Scholar
  40. Tamura Y. and Suganuma, S. (1996). “Evaluation of amplitude-dependent damping and natural frequency of buildings during strong winds.” J. Wind Eng. Ind. Aerodyn., Vol. 59, Nos. 2–3, pp. 115–130, DOI: 10.1016/0167-6105(96)00003–7.CrossRefGoogle Scholar
  41. Vandiver, J. K., Dunwoody, A. B., Campbell, R. B., and Cook, M. F. (1982). “A mathematical basis for the random decrement vibration signature analysis technique.” ASME J. Mech. Des., Vol. 104, No. 2, pp. 307–313, DOI: 10.1115/1.3256341.CrossRefGoogle Scholar
  42. Xie, J. M. (2014). “Aerodynamic optimization of super-tall buildings and its effectiveness assessment.” J. Wind Eng. Ind. Aerod., Vol. 130, pp. 88–98, DOI: 10.1016/j.jweia.2014.04.004.CrossRefGoogle Scholar
  43. Xiong, C. B., Niu, Y. B., and Li, Z. (2018). “An investigation of the dynamic characteristics of super high-rise buildings using real-time kinematic–global navigation satellite system technology.” Adv. Struct. Eng., Vol. 21, No. 5, pp. 783–792, DOI: 10.1177/1369433217732497.CrossRefGoogle Scholar
  44. Yang, J. C. S., Dagalakis, N. G., Everstine, G. C., and Wang, Y. F. (1983). “Measurement of structural damping using the random decrement technique.” Shock Vib. Bull., pp. 63–71.Google Scholar
  45. Yi, T. H., Li, H. N., and Gu, M. (2013). “Experimental assessment of high-rate GPS receivers for deformation monitoring of bridge.” Measurement, Vol. 46, pp. 420–432, DOI: 10.1016/j.measurement.2012.07.018.CrossRefGoogle Scholar
  46. Yi, J., Zhang, J. W., and Li, Q. S. (2013). “Dynamic characteristics and wind-induced responses of a super-tall building during typhoons.” J. Wind Eng. Ind. Aerod., Vol. 121, pp. 116–130, DOI: 10.1016/j.jweia.2013.08.006, DOI: 10.1016/j.jweia.2013.08.006.CrossRefGoogle Scholar
  47. You, K. P., You, J. Y., and Kim, Y. M. (2014). “Wind response of highrise building in diversified inlets to construct wind turbine system on roof.” J. Cent. South Univ., Vol. 21, No. 11, pp. 4395–4403, DOI: 10.1007/s11771-014-2440-3.CrossRefGoogle Scholar
  48. Yu, J. Y., Yan, B. F., Meng, X. L., Shao, X. D., and Ye, H. (2016). “Measurement of bridge dynamic responses using network-based real-time kinematic GNSS technique.” J. Surv. Eng., Vol. 142, No. 3, pp. 04015013, DOI: 10.1061/(ASCE)SU.1943-5428.0000167.CrossRefGoogle Scholar
  49. Zarikas, V., Gikas, V., and Kitsos, C. (2010). “Evaluation of the optimal design ‘Cosinor’ model for enhancing the potential of robotic theodolite kinematic observations.” Measurement, Vol. 45, No. 10, pp. 1416–1424, DOI: 10.1016/j.measurement.2010.08.006.CrossRefGoogle Scholar
  50. Zhong, M. Y., Guo, J., and Yang, Z. H. (2016). “On real time performance evaluation of the inertial sensors for INS/GPS integrated systems.” IEEE Sens. J., Vol. 16, No. 17, pp. 6652–6661, DOI: 10.1109/JSEN.2016.2588140.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Civil EngineeringTianjin UniversityTianjinChina

Personalised recommendations