KSCE Journal of Civil Engineering

, Volume 23, Issue 2, pp 763–776 | Cite as

Landslide Susceptibility Mapping using Relative Frequency and Predictor Rate along Araniko Highway

  • Tri Dev Acharya
  • Dong Ha LeeEmail author
Surveying and Geo-Spatial Information Engineering


Roads are important infrastructure that brings economic development in a nation by connecting different places. But, in Nepal, many roads are very vulnerable to landslides due to various reasons. Araniko Highway is one of the most landslide affected major road in Nepal lacking study in past. In this study, landslide susceptibility mapping along Dolalghat - Kodari section in Araniko Highway, Nepal, was done by integrating Relative Frequency (RF) and Predictor Rate (PR). PR was applied to the RF to quantify the prediction ability of the conditioning factors while producing Landslide Susceptibility Index (LSI). First, landslide inventory map of 314 landslides was prepared. Then, the database was divided into 70/30 ratio for the training and validating the model. After analysing thirteen landslide conditioning factors, susceptibility map produced using LSI was categorized into five classes. Finally, overall performance of the resulting map was assessed using the receiver operating characteristic curve technique. The success rate and prediction rate curve showed that the area under the curve for RF was 0.606 and 0.581 respectively. The result of this study showed a successful mapping of landslide susceptibility by integrating RF and PR.


landslide susceptibility relative frequency predictor rate road araniko highway Nepal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acharya, T. D. (2018). Regional scale landslide hazard assessment using machine learning methods in Nepal, PhD Thesis, Kangwon National University, Chuncheon, Korea.Google Scholar
  2. Acharya, T. D., Mainali, S. C., Yang, I. T., and Lee, D. H. (2016a). “Analysis of Jure landslide dam, Sindhupalchowk using GIS and remote sensing.” ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLI-B6, pp. 201–203, DOI: 10.5194/isprsarchives-xli-b6-201-2016.CrossRefGoogle Scholar
  3. Acharya, T. D. and Yang, I. T. (2015). “Landslide hazard zonation using GIS: A case study from Sindhupalchowk, Nepal.” International Journal of Applied Engineering Research (IJAER), Vol. 10, No. 7, pp. 18385–18394.Google Scholar
  4. Acharya, T. D., Yang, I. T., and Lee, D. H. (2016b). “Geospatial technologies for landslide inventory: Application and analysis to earthquake-triggered landslide of Sindhupalchowk, Nepal.” Journal of the Korean Society for Geo-spatial Information Science, Vol. 24, No. 2, pp. 95–106, DOI: 10.7319/kogsis.2016.24.2.095.CrossRefGoogle Scholar
  5. Althuwaynee, O. F., Pradhan, B., Park, H. J., and Lee, J. H. (2014a). “A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping.” Catena, Vol. 114, pp. 21–36, DOI: 10.1016/j.catena.2013.10.011.CrossRefGoogle Scholar
  6. Althuwaynee, O. F., Pradhan, B., Park, H. J., and Lee, J. H. (2014b). “A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping.” Landslides, Vol. 11, No. 6, pp. 1063–1078, DOI: 10.1007/s10346-014-0466-0.CrossRefGoogle Scholar
  7. Bălteanu, D., Chendeş, V., Sima, M., and Enciu, P. (2010). “A countrywide spatial assessment of landslide susceptibility in Romania.” Geomorphology, Vol. 124, No. 3, pp. 102–112, DOI: 10.1016/j.geomorph.2010.03.005.CrossRefGoogle Scholar
  8. Beven, K. J. and Kirkby, M. J. (1979). “A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant.” Hydrological Sciences Bulletin, Vol. 24, No. 1, pp. 43–69, DOI: 10.1080/02626667909491834.CrossRefGoogle Scholar
  9. Bonham-Carter, G. F. (1994). “Geographic information systems for geoscientists-modeling with GIS.” Computer Methods in the Geoscientists, Vol. 13, pp. 398, DOI: 10.1016/C2013-0-03864-9.Google Scholar
  10. Burningham, S. and Stankevich, N. (2005). “Why road maintenance is important and how to get it done The World Bank, Washington DC Transport Note No.” TRN-4 June, Google Scholar
  11. Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Tien Bui, D., Duan, Z., and Ma, J. (2017). “A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility.” Catena, Vol. 151, pp. 147–160, DOI: 10.1016/j.catena.2016.11.032.CrossRefGoogle Scholar
  12. Choi, J., Oh, H., Lee, H., Lee, C., and Lee, S. (2012). “Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS.” Eng. Geol., Vol. 124, pp. 12–23, DOI: 10.1016/j.enggeo.2011.09.011.CrossRefGoogle Scholar
  13. Conoscenti, C., Rotigliano, E., Cama, M., Caraballo-Arias, N. A., Lombardo, L., and Agnesi, V. (2016). “Exploring the effect of absence selection on landslide susceptibility models: A case study in Sicily, Italy.” Geomorphology, No. Supplement C, Vol. 261, pp. 222–235, DOI: 10.1016/j.geomorph.2016.03.006.Google Scholar
  14. Costanzo, D., Cappadonia, C., Conoscenti, C., and Rotigliano, E. (2012). “Exporting a Google Earth™ aided earth-flow susceptibility model: A test in central Sicily.” Nat. Hazards, Vol. 61, No. 1, pp. 103–114, DOI: 10.1007/s11069-011-9870-0.CrossRefGoogle Scholar
  15. Costanzo, D., Chacón, J., Conoscenti, C., Irigaray, C., and Rotigliano, E. (2014). “Forward logistic regression for earth-flow landslide susceptibility assessment in the Platani river basin (southern Sicily, Italy).” Landslides, Vol. 11, No. 4, pp. 639–653, DOI: 10.1007/s10346-013-0415-3.CrossRefGoogle Scholar
  16. Dahal, R. K., Hasegawa, S., Masuda, T., and Yamanaka, M. (2006). “Roadside slope failures in Nepal during torrential rainfall and their mitigation.” Disaster Mitigation of Debris Flows, Slope Failures and Landslides, pp. 503–514.Google Scholar
  17. Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., and Paudyal, P. (2008). “Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weightsof-evidence.” Geomorphology, Vol. 102, Nos. 3–4, pp. 496–510, DOI: 10.1016/j.geomorph.2008.05.041.CrossRefGoogle Scholar
  18. Das, I., Sahoo, S., van Westen, C., Stein, A., and Hack, R. (2010). “Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India).” Geomorphology, Vol. 114, No. 4, pp. 627–637, DOI: 10.1016/j.geomorph.2009.09.023.CrossRefGoogle Scholar
  19. Devkota, K., Regmi, A., Pourghasemi, H., Yoshida, K., Pradhan, B., Ryu, I., Dhital, M., and Althuwaynee, O. (2013). “Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya.” Nat. Hazards, Vol. 65, No. 1, pp. 135–165, DOI: 10.1007/s11069-012-0347-6.CrossRefGoogle Scholar
  20. Glade, T. and Crozier, M. J. (2005). “The nature of landslide hazard impact.” Landslide Hazard and Risk, T. Glade, M. Anderson, and M. Crozier, Ed., John Wiley & Sons, Ltd., Chichester, West Sussex, England, pp. 43–74, DOI: 10.1002/9780470012659.ch2.CrossRefGoogle Scholar
  21. Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P. (1999). “Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy.” Geomorphology, Vol. 31, Nos. 1–4, pp. 181–216, DOI: 10.1016/s0169-555x(99)00078-1.CrossRefGoogle Scholar
  22. Hong, Y., Adler, R., and Huffman, G. (2007). “Use of satellite remote sensing data in the mapping of global landslide susceptibility.” Nat. Hazards, Vol. 43, No. 2, pp. 245–256, DOI: 10.1007/s11069-006-9104-z.CrossRefGoogle Scholar
  23. Hong, H., Liu, J., Bui, D. T., Pradhan, B., Acharya, T. D., Pham, B. T., Zhu, A., Chen, W., and Ahmad, B. B. (2018). “Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China).” Catena, Vol. 163, pp. 399–413, DOI: 10.1016/j.catena.2018.01.005.CrossRefGoogle Scholar
  24. Kamp, U., Growley, B. J., Khattak, G. A., and Owen, L. A. (2008). “GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region.” Geomorphology, Vol. 101, No. 4, pp. 631–642, DOI: 10.1016/j.geomorph.2008.03.003.CrossRefGoogle Scholar
  25. Kanungo, D., Arora, M., Sarkar, S., and Gupta, R. (2009). “Landslide Susceptibility Zonation (LSZ) Mapping–A Review.” Journal of South Asia Disaster Studies, Vol. 2, No. 1, pp. 81–105.Google Scholar
  26. Kayastha, P. (2015). “Landslide susceptibility mapping and factor effect analysis using frequency ratio in a catchment scale: A case study from Garuwa sub-basin, East Nepal.” Arabian Journal of Geosciences, pp. 1–13, DOI: 10.1007/s12517-015-1831-6.Google Scholar
  27. Khatiwada, R. (2017). “This is how landslide has fallen at Narayanghad-Mughlin Road.” Vol. 2017,
  28. Lee, S. and Talib, J. A. (2005). “Probabilistic landslide susceptibility and factor effect analysis.” Environ. Geol., Vol. 47, No. 7, pp. 982–990, DOI: 10.1007/s00254-005-1228-z.CrossRefGoogle Scholar
  29. Lee, S. and Sambath, T. (2006). “Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models.” Environ. Geol., Vol. 50, No. 6, pp. 847–855, DOI: 10.1007/s00254-006-0256-7.CrossRefGoogle Scholar
  30. Mahmood, I., Qureshi, S. N., Tariq, S., Atique, L., and Iqbal, M. F. (2015). “Analysis of Landslides Triggered by October 2005, Kashmir Earthquake.” PLoS Curr., Vol. 7, pp. 1–11, DOI: 10.1371/currents.dis.0bc3ebc5b8adf5c7fe9fd3d702d44a99.Google Scholar
  31. Nagarik News (2017). “Again landslide in Narayanghad-Muglin Highway.” Traffic Stops,
  32. Petley, D., Hearn, G., Hart, A., Rosser, N., Dunning, S., Oven, K., and Mitchell, W. (2007). “Trends in landslide occurrence in Nepal.” Nat. Hazards, Vol. 43, No. 1, pp. 23–44, DOI: 10.1007/s11069-006-9100-3.CrossRefGoogle Scholar
  33. Pham, B. T., Tien Bui, D., Prakash, I., and Dholakia, M. B. (2017). “Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS.” Catena, Vol. 149, Part 1, pp. 52–63, DOI: 10.1016/j.catena.2016.09.007.CrossRefGoogle Scholar
  34. Pourghasemi, H., Pradhan, B., and Gokceoglu, C. (2012). “Application of fuzzy logic and Analytical Hierarchy Process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran.” Nat. Hazards, Vol. 63, No. 2, pp. 965–996, DOI: 10.1007/s11069-012-0217-2.CrossRefGoogle Scholar
  35. Pradhan, B. and Lee, S. (2010). “Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling.” Environmental Modelling & Software, Vol. 25, No. 6, pp. 747–759, DOI: 10.1016/j.envsoft.2009.10.016.CrossRefGoogle Scholar
  36. Regmi, A. D., Devkota, K. C., Yoshida, K., Pradhan, B., Pourghasemi, H., Kumamoto, T., and Akgun, A. (2014a). “Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya.” Arabian Journal of Geosciences, Vol. 7, No. 2, pp. 725–742, DOI: 10.1007/s12517-012-0807-z.CrossRefGoogle Scholar
  37. Regmi, A. D., Yoshida, K., Nagata, H., and Pradhan, B. (2014b). “Rock toppling assessment at Mugling–Narayanghat road section: ‘A case study from Mauri Khola landslide’, Nepal.” Catena, Vol. 114, pp. 67–77, DOI: 10.1016/j.catena.2013.10.013.CrossRefGoogle Scholar
  38. Regmi, A. D., Yoshida, K., Pourghasemi, H. R., Dhital, M. R., and Pradhan, B. (2014c). “Landslide susceptibility mapping along Bhalubang–Shiwapur area of mid-Western Nepal using frequency ratio and conditional probability models.” Journal of Mountain Science, Vol. 11, No. 5, pp. 1266–1285, DOI: 10.1007/s11629-013-2847-6.CrossRefGoogle Scholar
  39. Saha, A. K., Arora, M. K., Gupta, R. P., Virdi, M. L., and Csaplovics, E. (2005). “GIS-based route planning in landslide-prone areas.” Int. J. Geogr. Inf. Sci., Vol. 19, No. 10, pp. 1149–1175, DOI: 10.1080/13658810500105887.CrossRefGoogle Scholar
  40. Salcedo, D. A. (2009). “Behavior of a landslide prior to inducing a viaduct failure, Caracas–La Guaira highway, Venezuela.” Eng. Geol., Vol. 109, Nos. 1–2, pp. 16–30, DOI: 10.1016/j.enggeo.2009.02.001.CrossRefGoogle Scholar
  41. Sapkota, R. (2017). “China won’t listen; Nepal can act: 20 photos of Araniko Highway after disaster.” Annapurnapost, (in Nepali).Google Scholar
  42. Shrestha, H. R. (2010). “Road vs. hill environment: The trend of road construction in Nepal, Transport in mountains.” An international Workshop, Kathmandu, Nepal.Google Scholar
  43. Sidle, R. C., Furuichi, T., and Kono, Y. (2010). “Unprecedented rates of landslide and surface erosion along a newly constructed road in Yunnan, China.” Nat. Hazards, Vol. 57, No. 2, pp. 313–326, DOI: 10.1007/s11069-010-9614-6.CrossRefGoogle Scholar
  44. Sthapit, K. and Tennyson, L. (1991). “Bio-engineering erosion control in Nepal.” Unasylva-No. 164-Watershed Management, An International Journal of the Forestry and Food Industries, Vol. 42, No. 1991/1,
  45. Stocking, M. (1972). “Relief analysis and soil erosion in Rhodesia using multivariate techniques.” Zeitschrift für Geomorphologie, Vol. 16, pp. 432–443.Google Scholar
  46. Swets, J. A. (1988). “Measuring the accuracy of diagnostic systems.” Science, Vol. 240, No. 4857, pp. 1285–1293, DOI: 10.1126/science.3287615.MathSciNetCrossRefzbMATHGoogle Scholar
  47. Tien Bui, D., Ho, T. C., Revhaug, I., Pradhan, B., and Nguyen, D. (2014a). Landslide susceptibility mapping along the national road 32 of vietnam using GIS-based J48 decision tree classifier and its ensembles, Springer Berlin Heidelberg, DOI: 10.1007/978-3-642-32618-9_22.CrossRefGoogle Scholar
  48. Tien Bui, D., Lofman, O., Revhaug, I., and Dick, O. B. (2011). “Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression.” Nat. Hazards, Vol. 59, No. 3, pp. 1413–1444, DOI: 10.1007/s11069-011-9844-2.CrossRefGoogle Scholar
  49. Tien Bui, D., Pradhan, B., Revhaug, I., and Tran, C. T. (2014b). A comparative assessment between the application of fuzzy unordered rules induction algorithm and J48 decision tree models in spatial prediction of shallow landslides at Lang Son City, Vietnam, Springer, DOI: 10.1007/978-3-319-05906-8_6.CrossRefGoogle Scholar
  50. Tien Bui, D., Tuan, T.A., Klempe, H., Pradhan, B., and Revhaug, I. (2016). “Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree.” Landslides, Vol. 13, No. 2, pp. 361–378, DOI: 10.1007/s10346-015-0557-6.CrossRefGoogle Scholar
  51. Timilsina, M., Bhandary, N. P., Dahal, R. K., and Yatabe, R. (2014). “Distribution probability of large-scale landslides in central Nepal.” Geomorphology, Vol. 226, pp. 236–248, DOI: 10.1016/j.geomorph.2014.05.031.CrossRefGoogle Scholar
  52. Upreti, B. (2001). “The physiography and geology of Nepal and their bearing on the landslide problem.” Landslide Hazard Mitigation in the Hindu Kush-Himalayas, pp. 31–49.Google Scholar
  53. USAID Nepal (2015). “Nepal Historical Annual and Monthly Rainfall Distribution.” Vol. April 04, No. 2017.Google Scholar
  54. Yang, I. T., Acharya, T. D., and Lee, D. H. (2016). “Landslide susceptibility mapping for 2015 earthquake region of Sindhupalchowk, Nepal using frequency ratio.” Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 4, pp. 443–451, DOI: 10.7848/ksgpc.2016.34.4.443.CrossRefGoogle Scholar
  55. Yilmaz, I. (2009). “Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey).” Comput. Geosci., Vol. 35, No. 6, pp. 1125–1138, DOI: 10.1016/j.cageo.2008.08.007.CrossRefGoogle Scholar
  56. Youssef, A. M., Pradhan, B., Al-Kathery, M., Bathrellos, G. D., and Skilodimou, H. D. (2015). “Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation.” J. Afr. Earth Sci., Vol. 101, pp. 309–321, DOI: 10.1016/j.jafrearsci.2014.09.021.CrossRefGoogle Scholar
  57. Zhang, G., Cai, Y., Zheng, Z., Zhen, J., Liu, Y., and Huang, K. (2016). “Integration of the statistical index method and the analytic hierarchy process technique for the assessment of landslide susceptibility in Huizhou, China.” CATENA, Vol. 142, No. Supplement C, pp. 233–244, DOI: 10.1016/j.catena.2016.03.028.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Industrial TechnologyKangwon National UniversityChuncheonKorea
  2. 2.Dept. of Civil EngineeringKangwon National UniversityChuncheonKorea

Personalised recommendations