Advertisement

KSCE Journal of Civil Engineering

, Volume 22, Issue 12, pp 4852–4861 | Cite as

Estimation of the Load Sharing Ratio of Pre-installed Columns in Top-Down Buildings on Korean Rock

  • Sangseom Jeong
  • Dohyun Kim
Geotechnical Engineering
  • 55 Downloads

Abstract

The estimation of the load sharing ratio of the pre-installed column in typical top-down method building was carried out using three dimensional finite element analysis. The main focus was on quantifying the apparent load sharing ratio of the prebored and precast pile–which is the common form of a pre-installed column – throughout the construction process. Additional parametric study was conducted based on series of numerical analysis with special attention given to the pile load sharing ratio under different pile array, pile embedded length, structure height and rock type. Moreover, the load sharing ratio of a single pile was investigated based on the relative location of the pile in the raft (footing). The numerical model was verified based on the field data of two actual construction site using the prebored and precast pile and the top-down method. Based on the analysis results, it was shown that the pre-installed columns of top-down method building is capable of supporting a notable portion of the structural load throughout the construction process. Furthermore, it was also shown that the pile near the center of the raft carried more structure load compared to the piles in the side and the corner.

Keywords

load sharing ratio top-down method prebored and precast pile Percussion Rotary Drill (PRD) pile finite element analysis urban construction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brinkgreve, R. B. and Swolfs (2008). PLAXIS 3D foundation user manual, version 2.0., W.M., PLAXIS Inc., USA.Google Scholar
  2. Cho, C. W., Abdelrazaq, A., and Kim, S. H. (2011). A case study of shallow foundation for a super high-rise building, Continuous education on shallow foundation for geotechnical engineers.Google Scholar
  3. Crawley, J. D. and Stones, C. S. (1996). “Westminster Station–Deep foundations and top down construction in central London.” Geotechnical Aspects of Underground Construction in Soft Grounds, Rotterdam, pp. 93–97.Google Scholar
  4. Hong, W. K., Kim, J. M., Lee, H. C., Park, S. C., Lee, S. G., and Kim, S. I. (2010). “Modularized top-down construction technique using suspended pour forms (Modularized RC system downward, MRSD)”, The Structural Design of Tall and Special Buildings, Vol. 19, 802–822, DOI: 10.1002/tal.521.CrossRefGoogle Scholar
  5. Jeong, S. S. and Cho, J. Y. (2014). “Proposed nonlinear 3-D analytical method for piled raft foundations.” Computers and Geotechnics, Vol. 59, No. 6, 112–126.CrossRefGoogle Scholar
  6. Jeong, S. S., Han, Y. C., Kim, Y. M., and Kim, D. H. (2014). “Evaluation of the NATM tunnel load on concrete lining using the ground lining interaction model.” KSCE Journal of Civil Engineering, Vol. 18, No. 2, 672–682.MathSciNetCrossRefGoogle Scholar
  7. Jeong, S. S. and Hong, M. H. (2015). “Analysis of load sharing ratio for PHC piled-raft foundation.” Proceeding of KSCE 2015 Fall Convention, Seoul, Korea, pp. 81–82.Google Scholar
  8. Jung, G. J., Kim, D. H., Lee, C. J., and Jeong, S. S. (2017). “Analysis of skin friction behavior in prebored and precast piles based on field loading test.” Journal of Korean Geotechnical Society, Vol. 33, No. 1, 31–38.Google Scholar
  9. Kim, Y. H. and Jeong, S. S. (2011). “Analysis of soil resistance on laterally loaded piles based in 3D soil-pile interaction.” Computers and Geotechnics, Vol. 38, No. 2, 248–257.CrossRefGoogle Scholar
  10. Kim, S. I., Jeong, S. S., Cho, S. H., and Park, I. J. (1999). “Shear load transfer characteristics of drilled shafts in weathered rocks.” ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 11, 999–1010.CrossRefGoogle Scholar
  11. Ko, J. Y., Cho, J. Y., and Jeong, S. S. (2017). “Nonlinear 3D interactive analysis of superstructure and piled raft foundation.” Engineering Structures, Vol. 143, 204–218.CrossRefGoogle Scholar
  12. Lee, J. H., Park, D. S., Park, D. G., and Park, K. B. (2015). “Estimation of load-sharing ratios for piled rafts in sand that includes interaction effects.” Computers and Geotechnics, Vol. 63, 306–314.CrossRefGoogle Scholar
  13. Moh, Z. C. and Chin, C. T. (1994). “Braced excavation in soft ground–southeast Asia.” International Symposia on Underground Construction in Soft Ground, New Delhi, pp. 29–32.Google Scholar
  14. POSCO (2001). Technical research report on top-down method, POSCO.Google Scholar
  15. Poulos, H. G. (2001). “Piled raft foundations: Design and applications.” Geotechnique, Vol. 51, No. 2, 95–113.CrossRefGoogle Scholar
  16. Rhim, H. C., Kim, K. M., and Kim, S. W. (2012). “Development of an optimum pre-founded column system for top-down construction.” Journal of Civil Engineering and Management, Vol. 18, No. 5, 735–743.CrossRefGoogle Scholar
  17. Seol, H. I., Jeong, S. S., Cho, C. W., and You, K. H. (2008). “Shear load transfer for rock-socketed drilled shafts based on borehole roughness and Geological Strength Index (GSI).” Int. J. Rock Mech. & Mining Sci., Vol. 45, No. 6, 848–861.CrossRefGoogle Scholar
  18. Song, J. Y., Rhim, H. C., and Kim, S. W. (2009). “Development of concrete filled tube as a pillar pile for top down method.” The 3rd International Conference on Construction Engineering and Management (ICCEM), Jeju, Korea, pp. 808–813.Google Scholar
  19. Tan, Y. and Li, M. (2011). “Measured performance of a 26m deep topdown excavation in downtown Shanghai.” Canadian Geotechnical Journal, Vol. 48, 704–719, DOI: 10.1139/T10-100.CrossRefGoogle Scholar
  20. Tatum, C. B., Bauer, M. F., and Meade, A. W. (1989). “Process of innovation for up/down construction at rowes wharf.” Journal of Construction Engineering and Management, ASCE, Vol. 115, No. 2, 179–195.CrossRefGoogle Scholar
  21. Yamamoto, K., Miyata, T., Motooka, N., and Hattori, A. (2009). “Development of top-down construction using precast ultra-high strength concrete for basement columns and application to high-rise building.” Concrete Journal, Vol. 47, pp. 34–38.CrossRefGoogle Scholar
  22. Zhu, H., Zhang, F., Chin, C. T., and Zhang, D. (2006). “Underground construction and ground movement.” Proc. of Sessions of GeoShanghai, Shanghai, China, pp. 426.Google Scholar

Copyright information

© Korean Society of Civil Engineers 2018

Authors and Affiliations

  1. 1.School of Civil and Environmental EngineeringYonsei UniversitySeoulKorea

Personalised recommendations