Advertisement

KSCE Journal of Civil Engineering

, Volume 20, Issue 2, pp 670–678 | Cite as

Effects of phosphate dispersants on the liquid limit, sediment volume and apparent viscosity of clayey soil/calcium-bentonite slurry wall backfills

  • Yan-Jun Du
  • Yu-Ling Yang
  • Ri-Dong Fan
  • Fei WangEmail author
Geotechnical Engineering

Abstract

Soil-bentonite slurry-trench wall, usually consisting of sandy soil and Na-bentonite, is used extensively as in-situ engineered barriers for contaminant containment. Clayey soil/Ca-bentonite may be considered as an alternative backfill when Na-bentonite is scarce at some sites. Adding trace amount of phosphate dispersant to clayey soil/Ca-bentonite backfills may be advantageous to maintain the deflocculated structure of bentonite, which is benefit to minimizing increases in hydraulic conductivity of the backfills when attacked by contaminants. However, studies on the application of phosphate dispersants to the clayey soil/Ca-bentonite backfills are very limited. A series of laboratory tests are conducted for the measurements of liquid limit, sediment volume and apparent viscosity of the phosphate dispersant-amended backfills. The phosphate dispersants tested are sodium hexametaphosphate, sodium tripolyphosphate and sodium pyrophosphate with contents ranging from 0 to 2%. The results demonstrate that the values of liquid limit, sediment volume and apparent viscosity of the backfills decrease sharply when the dispersant content is relatively low (≤0.1 to 0.5%), while they change slightly at relatively high dispersant content (> 0.1 to 0.5%). The type and content of the dispersant as well as Ca-bentonite content have significant effects on the liquid limit, sediment volume and apparent viscosity of the backfill. The sodium hexametaphosphate is shown to have higher dispersibility compared with the others in terms of greater reduction in apparent viscosity, and its optimum content is suggested in a range of 0.1% to 0.5%. A power function is proposed which well quantifies the relationship between the measured apparent viscosity and liquid limit.

Keywords

dispersant liquid limit soil-bentonite slurry wall sedimentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adebowale, K. O., Unuabonah, I. E., and Olu-Owolabi, B. I. (2005). “Adsorption of some heavy metal ions on sulfate- and phosphatemodified kaolin.” Applied Clay Science, Vol. 29, No. 2, pp. 145–148, DOI:  10.1016/j.clay.2004.10.003.CrossRefGoogle Scholar
  2. API 13A (2010). Specification for drilling fluids materials: API 13A, American Petroleum Institute (API), Washington, D.C.Google Scholar
  3. Asada, M. and Horiuchi, S. (2005). “High-density bentonite slurry for seepage barriers.” Journal of Materials in Civil Engineering, Vol. 17, No. 2, pp. 178–187, DOI: 10.1061/(ASCE)0899-1561(2005) 17:2(178).CrossRefGoogle Scholar
  4. Cerato, A. B. and Luteneggerl, A. J. (2002). “Determination of surface area of fine-grained soils by the Ethylene Glycol Monoethyl Ether (EGME) method.” Geotechnical Testing Journal, Vol. 25, No. 3, pp. 315–321, DOI:  10.1520/GTJ11087J.Google Scholar
  5. D’Appolonia, D. J. (1980). “Soil-bentonite slurry trench cutoffs.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 106, No. 4, pp. 399–417.Google Scholar
  6. Du, Y. J., Fan, R. D., Reddy, K. R., Liu, S. Y., and Yang, Y. L. (2015). “Impacts of presence of lead contamination in the clayey soilcalcium bentonite cutoff wall backfills.” Applied Clay Science, Vol. 108, pp. 111–122, DOI:  10.1016/j.clay.2015.02.006.CrossRefGoogle Scholar
  7. Du, Y. J. and Hayashi, S. (2006). “A study on sorption properties of Cd2+ on Ariake clay for evaluating its potential use as a landfill barrier material.” Applied Clay Science, Vol. 32, Nos. 1–2, pp. 14–24, DOI:  10.1016/j.clay.2006.01.003.CrossRefGoogle Scholar
  8. Du, Y. J., Jiang, N. J., Liu, S. Y., Jin, F., Singh, D. N., and Puppala, A. J. (2014). “Engineering properties and microstructural characteristics of cement-stabilized zinc-contaminated kaolin.” Canadian Geotechnical Journal, Vol. 51, No. 3, pp. 289–302, DOI:  10.1139/cgj-2013-0177.CrossRefGoogle Scholar
  9. Du, Y. J., Jiang, N. J., Shen, S. L., and Jin, F. (2012). “Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay.” Journal of Hazardous Materials, Vol. 225-226, No. 6, pp. 195–201, DOI:  10.1016/j.jhazmat.2012.04.072.Google Scholar
  10. Du, Y. J., Shen, S. L., Liu, S. Y., and Hayashi, S. (2009). “Contaminant mitigating performance of Chinese standard municipal solid waste landfill liner systems.” Geotextiles and Geomembranes, Vol. 27, No. 3, pp. 232–239, DOI:  10.1016/j.geotexmem.2008.11.007.CrossRefGoogle Scholar
  11. Evans, J. C. (1994). “Hydraulic conductivity of vertical cutoff walls.” ASTM Special Technical Publication, Vol. 1142, pp. 79–93.Google Scholar
  12. Evans, J. C., Costa, M. J., and Cooley, B. (1995). “The state-of-stress in soil-Cbentonite slurry trench cutoff walls.” Geoenvironment 2000: Characterization, Containment, Remediation, and Performance in Environmental Geotechnics, ASCE, pp. 1173–1191.Google Scholar
  13. Fan, R. D., Du, Y. J., Reddy, K. R., Liu, S. Y., and Yang, Y. L. (2014). “Compressibility and hydraulic conductivity of clayey soil mixed with calcium bentonite for slurry wall backfill: Initial assessment.” Applied Clay Science, Vol. 101, pp. 119–127, DOI: 10.1016/j.clay. 2014.07.026CrossRefGoogle Scholar
  14. Gleason, M. H., Daniel, D. E., and Eykholt, G. R. (1997). “Calcium and sodium bentonite for hydraulic containment applications.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 5, pp. 438–445, DOI:  10.1061/(ASCE)1090-0241(1997)123:5(438).CrossRefGoogle Scholar
  15. Grim, R. E. (1968). Clay mineralogy (2nd ed.), McGraw-Hill, New York.Google Scholar
  16. Hong, C. S., Shackelford, C. D., and Malusis, M. A. (2012). “Consolidation and hydraulic conductivity of zeolite amended soil-bentonite backfills.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 138, No. 1, pp. 15–25, DOI:  10.1061/(ASCE)GT.1943-5606.0000566.CrossRefGoogle Scholar
  17. Hunter, R. J. (1993). Introduction to modern colloid science (1st ed.), Oxford University Press, Oxford.Google Scholar
  18. Jo, H. Y., Benson, C. H., Shackelford, C. D., Lee, J. M., and Edil, T. B. (2005). “Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 4, pp. 405–417, DOI:  10.1061/(ASCE)1090-0241(2005)131:4(405).CrossRefGoogle Scholar
  19. Jo, H. Y., Katsumi, T., Benson, C. H., and Edil, T. B. (2001). “Hydraulic conductivity and swelling of non-prehydrated GCLs permeated with single species salt solutions.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 7, pp. 557–567, DOI: 10.1061/ (ASCE)1090-0241(2001)127:7(557).CrossRefGoogle Scholar
  20. Jung, H. S., Park, J. S., Lee, Y. J., Kim, S. K., Kong, J. Y., Chun, B. S., and Ryou, J. S. (2013). “Reduction of heavy metals and organic materials by atomized slag barrier in contaminated groundwater.” KSCE Journal of Civil Engineering, KSCE, Vol. 17, No. 7, pp. 1578–1586. DOI:  10.1007/s12205-013-0104-8.CrossRefGoogle Scholar
  21. Katsumi, T., Kamon, M., Inui, T., and Araki, S. (2008). “Hydraulic barrier performance of SBM cut-off wall constructed by the trench cutting and re-mixing deep wall method.” Proceedings of GeoCongress 2008@Geotechnics of Waste Management and Remediation, ASCE, pp. 628–635, DOI:  10.1061/40970(309)79.Google Scholar
  22. Khandelwal, A. and Rabideau, A. J. (2000). “Enhancement of soilbentonite barrier performance with the addition of natural humus.” Journal of Contaminant Hydrology, Vol. 45, Nos. 3–4, pp. 267–282. DOI:  10.1016/S0169-7722(00)00110-8.CrossRefGoogle Scholar
  23. Kim, S. and Palomino, A. M. (2009). “Polyacrylamide-treated kaolin: A fabric study.” Applied Clay Science, Vol. 45, No. 4, pp. 270–279, DOI:  10.1016/j.clay.2009.06.009.CrossRefGoogle Scholar
  24. Lagaly, G. (1989). “Principles of flow of kaolin and bentonite dispersions.” Applied Clay Science, Vol. 4, No. 2, pp. 105–123, DOI: 10.1016/ 0169-1317(89)90003-3.CrossRefGoogle Scholar
  25. Lagaly, G. and Ziesmer, S. (2003). “Colloid chemistry of clay minerals: The coagulation of montmorillonite dispersions.” Advances in Colloid and Interface Science, Vol. 100, pp. 105–128, DOI:  10.1016/S0001-8686(02)00064-7.CrossRefGoogle Scholar
  26. Lambe, T. W. (1954). “The improvement of soil properties with dispersants.” Boston Society of Civil Engineers, Vol. 41, No. 2, pp. 184–207.Google Scholar
  27. Lim, J., Choi, H., and Stark, T. D. (2011). “Numerical modeling of diffusion for volatile organic compounds through composite landfill liner systems.” KSCE Journal of Civil Engineering, KSCE, Vol. 15, No. 6, pp. 1033–1039, DOI:  10.1007/s12205-011-1293-7.CrossRefGoogle Scholar
  28. Ma, M. (2012). “The dispersive effect of sodium hexametaphosphate on kaolinite in saline water.” Clays and Clay Minerals, Vol. 60, No. 4, pp. 405–410, DOI:  10.1346/CCMN.2012.0600406.CrossRefGoogle Scholar
  29. Malusis, M. A, Barben, E. J., and Evans, J. C. (2009). “Hydraulic conductivity and compressibility of soil-bentonite backfill amended with activated carbon.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 5, pp. 664–672, DOI: 10.1061/(ASCE) GT.1943-5606.0000041.CrossRefGoogle Scholar
  30. Malusis, M. A., Maneval, J. E., Barben, E. J., Shackelford, C. D., and Daniels, E. R. (2010). “Influence of adsorption on phenol transport through soil-bentonite vertical barriers amended with activated carbon.” Journal of Contaminant Hydrology, Vol. 116, Nos. 1–4, pp. 58–72, DOI:  10.1016/j.jconhyd.2010.06.001.CrossRefGoogle Scholar
  31. Mishra, A. K., Ohtsubo, M., Li, L. Y., Higashi, T., and Park, J. (2009). “Effect of salt of various concentrations on liquid limit, and hydraulic conductivity of different soil bentonite mixtures.” Environmental Geology, Vol. 57, No. 5, pp. 1145–1153, DOI:  10.1007/s00254-008-1411-0.CrossRefGoogle Scholar
  32. Mitchell, J. K. and Soga, K. (2005). Fundamentals of soil benavior (3rd ed.), John Wiley and Sons, New Jersey.Google Scholar
  33. Olu-Owolabi, B. I. and Unuabonah, E. I. (2011). “Adsorption of Zn 2+ and Cu 2+ onto sulphate and phosphate-modified bentonite.” Applied Clay Science, Vol. 51, No. 1, pp. 170–173, DOI: 10.1016/j.clay. 2010.10.022.CrossRefGoogle Scholar
  34. Papo, A., Piani, L., and Ricceri, R. (2002). “Sodium tripolyphosphate and polyphosphate as dispersing agents for kaolin suspensions: Rheological characterization.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 201, No. 1, pp. 219–230. DOI:  10.1016/S0927-7757(01)01024-X.CrossRefGoogle Scholar
  35. Penner, D. and Lagaly, G. (2001). “Influence of anions on the rheological properties of clay mineral dispersions.” Applied Clay Science, Vol. 19, No. 1, pp. 131–142, DOI:  10.1016/S0169-1317(01)00052-7.CrossRefGoogle Scholar
  36. Rabideau, A. J., Shen, P. L, and Khandelwal, A. (1999). “Feasibility of amending slurry walls with zero-valent iron.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 4, pp. 330–333, DOI:  10.1061/(ASCE)1090-0241(1999)125:4(330).CrossRefGoogle Scholar
  37. Shackelford, C. D., Benson, C. H., Katsumi, T., Edil, T. B., and Lin, L. (2000). “Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids.” Geotextiles and Geomembranes, Vol. 18, Nos. 2–4, pp. 133–161, DOI:  10.1016/S0266-1144(99)00024-2.CrossRefGoogle Scholar
  38. Sharma, H. D. and Reddy, K. R. (2004). Geoenvironmental engineering: Site remediation, waste containment, and emerging waste management technologies, John Wiley & Sons, New York.Google Scholar
  39. Sridharan, A., Hayashi, S., and Du, Y. J. (2007). “Discussion of “Structure characteristics and mechanical properties of kaolinite soils. I. Surface charges and structural characterizations.” Canadian Geotechnical Journal, Vol. 44, No. 2, pp. 241–242, DOI:  10.1139/t06-133.CrossRefGoogle Scholar
  40. Sridharan, A. and Prakash, K. (1999). “Influence of clay mineralogy and pore-medium chemistry on clay sediment formation.” Canadian Geotechnical Journal, Vol. 36, No. 5, pp. 961–966, DOI: 10.1139/t99-045.CrossRefGoogle Scholar
  41. Sridharan, A., Rao, S. M., and Murthy, N. S. (1988). “Liquid limit of kaolinitic soils.” Geotechnique, Vol. 38, No. 2, pp. 191–198, DOI:  10.1680/geot.1988.38.2.191.CrossRefGoogle Scholar
  42. Tchillingarian, G. (1952). “Study of the dispersing agents.” Journal of Sedimentary Petrology, Vol. 22, No. 4, pp. 229–233.CrossRefGoogle Scholar
  43. Wang, Y. H. and Siu, W. K. (2006). “Structure characteristics and mechanical properties of kaolinite soils. II. Effects of structure on mechanical properties.” Canadian Geotechnical Journal, Vol. 43, No. 6, pp. 601–617, DOI:  10.1139/t06-027.CrossRefGoogle Scholar
  44. Xue, Q., Li, J., and Liu, L. (2013). “Experimental study on anti-seepage grout made of leachate contaminated clay in landfill.” Applied Clay Science, Vol. 80, pp. 438–442, DOI:  10.1016/j.clay.2013.06.026.CrossRefGoogle Scholar
  45. Yoon, J. S. and El Mohtar, C. S. (2012). “Time dependent rheological behavior of modified bentonite suspensions.” Proceedings of GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, ASCE, pp. 1195–1204, DOI:  10.1061/9780784412121.123.CrossRefGoogle Scholar
  46. Yukselen-Aksoy, Y. and Reddy, K. R. (2013). “Electrokinetic delivery and activation of persulfate for oxidation of PCBs in clayey soils.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 1, pp. 175–184, DOI:  10.1061/(ASCE)GT.1943-5606.0000744.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yan-Jun Du
    • 1
  • Yu-Ling Yang
    • 1
  • Ri-Dong Fan
    • 1
  • Fei Wang
    • 2
    Email author
  1. 1.Institute of Geotechnical EngineeringSoutheast UniversityNanjingChina
  2. 2.Institute of Geotechnical EngineeringSoutheast UniversityNanjing, JiangsuChina

Personalised recommendations