KSCE Journal of Civil Engineering

, Volume 19, Issue 5, pp 1445–1455 | Cite as

Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash

  • M. Albitar
  • P. VisintinEmail author
  • M. S. Mohamed Ali
  • M. Drechsler
Structural Engineering


Geopolymer binders have been shown to be a potential green replacement for Ordinary Portland Cement (OPC) in concrete manufacture. This paper presents an experimental study into the behaviour of geopolymer concrete in both its wet and hardened states using Class F fly ash. The experimental program included 15 mix designs to investigate the influence of water-to-binder and superplasticiser-to-binder ratios on the workability and strength of fly ash-based geopolymer concrete. The results show that the addition of naphthalene sulphonate polymer-based superplasticiser has little to no influence on workability and a detrimental effect on strength. Furthermore, the indirect tensile strength, flexural tensile strength and elastic modulus of fly ash-based geopolymer concrete were recorded in this experimental program and have been added to a database of available tests in the open literature. The experimentally determined results are subsequently compared with prediction models developed for OPC-based concrete. The comparison suggests that existing OPC models provide reasonably accurate predictions of the elastic moduli and stress-strain relationships, whereas they slightly underestimate flexural and splitting tensile strengths.


fly ash geopolymer concrete engineering properties workability tensile strength elastic moduli 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ACI Committee 318 (2008). Building code requirements for structural concrete (ACI 318-08) and commentary, American Concrete Institute, Farmington Hills, MI.Google Scholar
  2. Ahmad, S. H. and Shah, S. P. (1985). “Structural properties of high strength concrete and its implication for precast prestressed concrete.” Portland Cement Instituted Journal, Vol. 30, No. 6, pp. 92–119.Google Scholar
  3. Al Bakri, A. M., Kamarudin, H., Bnhussain, M., Nizar, I., Rafiza, A. R., and Zarina, Y. (2012). “The processing, characterization, and properties of fly ash based geopolymer concrete.” Reviews on Advanced Materials Science, Vol. 30, pp. 90–97.Google Scholar
  4. AS 1012.10 (2000). Method of testing concrete: Determination of indirect tensile strength of concrete cylinders (Brazil or Splitting Test), Australian Standards.Google Scholar
  5. AS 1012.11 (2000). Method of testing concrete: Determination of the modulus of rupture, Australian Standards.Google Scholar
  6. AS 1012.17 (1997). Methods of testing concrete: Determination of the static chord modulus of elasticity and Poisson’s ratio of concrete specimens, Australian Standards.Google Scholar
  7. AS 1012.3.1 (1998). Methods of testing concrete: Determination of properties related to the consistency of concrete — Slump test, Australian Standards.Google Scholar
  8. AS 1012.3.2 (1998). Methods of testing concrete: Determination of properties related to the consistency of concrete — Compacting factor test, Australian Standards.Google Scholar
  9. AS 3600 (2001). Concrete structure, Australian Standards.Google Scholar
  10. ASTM C618-08 (2008). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, Amirican Society for Testing and Materials, Philadelphia, DOI:  10.1520/C0618-08.Google Scholar
  11. Bijen, J. (1995). “Benefits of slag and fly ash.” Construction and Building Materials, Vol. 10, No. 5, pp. 309–314, DOI:  10.1016/0950-0618(95)00014-3.CrossRefGoogle Scholar
  12. Bosoaga, A., Masek, O., and Oakey, J. E. (2009). “CO2 capture technologies for cement industry.” Energy Procedia, pp. 133–40, DOI:  10.1016/j.egypro.2009.01.020.Google Scholar
  13. Cement Industry Federation (2011). Australian cement industry: Sustainability report.Google Scholar
  14. Chen, Y., Visintin, P., Oehlers, D. J., and Alengaram, U. J. (2013). “Sizedependent stress-strain model for unconfined concrete.” Journal of Structural Engineering, Vol. 140, No. 4, DOI:  10.1061/(ASCE)ST.1943-541X.0000869.
  15. Collins, M. P., Mitchell, D., and MacGregor, G. J. (1993). “Structural design considerations for high strength concrete.” ACI Concrete International, Vol. 15, No. 5, pp. 27–34.Google Scholar
  16. Davidovits, J. (1991). “Geopolymers: Inorganic polymeric new materials.” Journal of Thermal Analysis, Vol. 37, No. 8, pp. 1633–1656, DOI:  10.1007/BF01912193.CrossRefGoogle Scholar
  17. Davidovits, J. (1994). “Global warming impact on the cement and aggregates industries.” World Resource Review, Vol. 6, No. 2, pp. 263–278.Google Scholar
  18. Duxson, P., Provis, J. L., Lukey, G. C., and van Deventer, J. S. J. (2007). “The role of inorganic polymer technology in the development of ‘green concrete’.” Cement and Concrete Research, Vol. 37, No. 12, pp. 1590–1597, DOI:  10.1016/j.cemconres.2007.08.018.CrossRefGoogle Scholar
  19. Eliasson, B., Riemer, P. W. F., and Wokaun, A. (1999). Greenhouse gas control technologies, Elsevier Science Ltd., UK.Google Scholar
  20. European Standard. (2002). Eurocode 2: Design of concrete structure — Part 1: General rules and rules for buildings, Ref. No. prEN 1992-1-1.Google Scholar
  21. Fernández-Jiménez, A., Palomo, A., and López-Hombrados, C. (2006). “Engineering properties of alkali-activated fly ash concrete.” ACI Materials Journal, Vol. 103, No. 2, pp. 106–112, DOI:  10.14359/15261.Google Scholar
  22. Hardjito, D. and Rangan, B. V. (2005). Development and properties of low-calcium fly ash-based geopolymer concrete, Research report GC1, Faculty of Engineering Curtin University of Technology, Perth, Australia.Google Scholar
  23. Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., and Rangan, B. V. (2004). “Factors influencing the compressive strength of fly ash-based geopolymer concrete.” Journal of Civil Engineering Dimension, Vol. 6, No. 2, pp. 88–93.Google Scholar
  24. Heah, C. Y., Kamarudin, H., Al Bakri, A. M. M., Bnhussain, M., Luqman, M., Nizar, I. K., Ruzaidi, C. M., and Liew, Y. M. (2012). “Study on solids-to liquid and alkaline activator ratios on kaolinbased geopolymers.” Construction and Building Materials, Vol. 35, pp. 912–922, DOI:  10.1016/j.conbuildmat.2012.04.102.CrossRefGoogle Scholar
  25. Hognestad, E. N. (1951). A study of combined bending and axial load in reinforced concrete members, University of Illinois at Urbana-Champaign, Vol. 49, No. 22, USA.Google Scholar
  26. Ivan Diaz-Loya, E., Allouche, E. N., and Vaiday, S. (2011). “Mechanical properties of fly-ash-based geopolymer concrete.” ACI Materials Journal, pp. 300–306.Google Scholar
  27. Laskar, A. I. and Bhattacharjee, R. (2013). “Effect of plasticizer and superplasticizer on rheology of fly-ash-based geopolymer concrete.” ACI Materials Journal, pp. 513–518.Google Scholar
  28. Naik, T. R. and Kumar, R. (2013). “Geopolymer concrete for sustainable developments: Opportunities, limitations, and future needs.” Third International Conference on Sustainable Construction Materials and Technologies, pp. 1–8.Google Scholar
  29. Neville, A. M. (2000). Properties of concrete, Prentice Hall, London.Google Scholar
  30. Nguyen, N. H., Smith, S. M., Staniford, M. D., and van Senden, M. F. (2010). Geopolymer concrete — Concrete goes green, Research report, School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, Australia.Google Scholar
  31. Nowak, R. (2008). “Build ‘em high, and make them green’.” New Scientist, Vol. 197, No. 2640, pp. 28–29, DOI:  10.1016/S0262-4079(08)60229-8.CrossRefGoogle Scholar
  32. Olivia, M. and Nikraz, H. (2011) “Properties of fly ash geopolymer concrete designed by Taguchi method.” Materials and Design, Vol. 36, pp. 191–198, DOI:  10.1016/j.matdes.2011.10.036.CrossRefGoogle Scholar
  33. Palomo, A., Grutzek, M., and Blanco, M. (1999). “Alkali-activated fly ashes. A cement for the future.” Cement and Concrete Research, Vol. 29, No. 8, pp. 1323–1329, DOI:  10.1016/S0008-8846(98)00243-9.CrossRefGoogle Scholar
  34. Raijiwala, D. B. and Patil, H. S. (2010). “Geopolymer concrete: a green concrete.” 2 nd International Conference on Chemical, Biological and Environmental Engineering, pp. 202–206, DOI:  10.1109/ICBEE.2010.5649609.Google Scholar
  35. Rattanasak, U. and Chindaprasirt, P. (2009). “Influence of NaOH solution on the synthesis of fly ash geopolymer.” Minerals Engineering, Vol. 22, No. 12, pp. 1073–1078, DOI:  10.1016/j.mineng.2009.03.022.CrossRefGoogle Scholar
  36. Shah, A. A. and Ribakov, Y. (2011). “Recent trends in steel fibered highstrength concrete.” Materials and Design, Vol. 32, Nos. 8–9, pp. 4122–4151, DOI:  10.1016/j.matdes.2011.03.030.CrossRefGoogle Scholar
  37. Shi, C., Jiménez, A. F., and Palomo, A. (2011). “New cements for the 21st century: The pursuit of an alternative to Portland cement.” Cement and Concrete Research, Vol. 41, No. 7, pp. 750–763, DOI:  10.1016/j.cemconres.2011.03.016, DOI:  10.1016/j.cemconres.2011.03.016.CrossRefGoogle Scholar
  38. Sofi, M., Van Deventer, J. S. J., Mendis, P. A., and Lukey, G. C. (2007a). “Engineering properties of Inorganic Polymer Concretes (IPCs).” Cement and Concrete Research, Vol. 37, No. 2, pp. 251–257, DOI:  10.1016/j.cemconres.2006.10.008.CrossRefGoogle Scholar
  39. Sofi, M., van Deventer, J. S. J., Mendis, P. A., and Lukey, G. C. (2007b). “Bond performance of reinforcing bars in Inorganic Polymer Concrete (IPC).” Advances in Geopolymer Science & Technology, Vol. 42, No. 9, pp. 3107–3116, DOI:  10.1007/s10853-006-0534-5.Google Scholar
  40. Tosun-Felekoğlu, K. (2012). “The effect of C3A content on sulfate durability of Portland limestone cement mortars.” Construction and Building Materials, Vol. 36, pp. 437–447, DOI:  10.1016/j.conbuildmat.2012.04.091.CrossRefGoogle Scholar
  41. Van Deventer, J. S. J., Provis, J. L., and Duxson, P. (2012). “Technical and commercial progress in the adoption of geopolymer cement.” Minerals Engineering, Vol. 29, pp. 89–104, DOI:  10.1016/j.mineng.2011.09.009.CrossRefGoogle Scholar
  42. Van Jaarsveld, J. G. S., van Deventer, J. S. J., and Lukey, G. C. (2002). “The effect of composition and temperature on the properties of fly ash-and kaolinite-based geopolymers.” Chemical Engineering Journal, Vol. 89, pp. 63–73, DOI:  10.1016/S1385-8947(02)00025-6.CrossRefGoogle Scholar
  43. Vijai, K., Kumutha, R., and Vishnuram, B. G. (2010). Influence of curing types on strength of: Geopolymer concrete, Athena Information Solutions Pvt. Ltd. NBM & CW 2010, Scholar
  44. Vijai, K., Kumutha, R., and Vishnuram, B. G. (2012). “Experimental investigations on mechanical properties of geopolymer concrete composites.” Asian Journal of Civil Engineering (Building and Housing), Vol. 13, No. 1, pp. 89–96.Google Scholar
  45. Warner, R. F., Rangan, B. V., Hall, A. S., and Faulkes, K. A. (1998). Concrete structures, Addison Wesley Longman Australia Ltd., Melbourne.Google Scholar
  46. Xu, H. and van Deventer, J. S. J. (2000). “The geopolymerisation of alumino-silicate minerals.” International Journal of Mineral Processing, Vol. 59, No. 3, pp. 247–266, DOI:  10.1016/S0301-7516(99)00074-5.CrossRefGoogle Scholar
  47. Yildirim, H., Sümer, M., Akyüncü, V., and Gürbüz, E. (2011). “Comparison on efficiency factors of F and C types of fly ashes.” Construction & Building Materials, Vol. 25, No. 6, pp. 2939–2947, DOI:  10.1016/j.conbuildmat.2010.12.009.CrossRefGoogle Scholar
  48. Yip, C. K. and van Deventer, J. S. J. (2003). “Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder.” Journal of Materials Science, Vol. 38, No. 18, pp. 3851–3860, DOI:  10.1023/A:1025904905176.CrossRefGoogle Scholar
  49. Yost, J. R., Radlińska, A., Ernst, S., and Salera, M. (2013). “Structural behaviour of alkali activated fly ash concrete. Part 1: Mixture design, material properties and sample fabrication.” Materials and Structures, Vol. 46, No. 3, pp. 435–447, DOI:  10.1617/s11527-012-9919-x.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. Albitar
    • 1
  • P. Visintin
    • 1
  • M. S. Mohamed Ali
    • 1
  • M. Drechsler
    • 1
  1. 1.School of Civil, Environmental and Mining EngineeringThe University of AdelaideSouth AustraliaAustralia

Personalised recommendations