KSCE Journal of Civil Engineering

, Volume 19, Issue 5, pp 1405–1412 | Cite as

Optimum mix ratio for carbon nanotubes in cement mortar

  • Tanvir ManzurEmail author
  • Nur Yazdani
Structural Engineering


Cementitious composites have high compressive strength and modulus of elasticity, but relatively low tensile strength, toughness and ductility. They are amenable to enhancement through nanotechnology due to the physical behavior and size of hydration products. Carbon Nanotube (CNT) is a very efficient reinforcing agent due to its extremely high aspect ratio and ultra-high strength. So, there is a high potential to utilize CNT in producing new cement based composite materials. In this study, a parametric experimental investigation was undertaken to determine optimum mix dosage of CNT for cement mortar. Different dosage rates of surface treated Multi-Walled Nanotubes (MWNT), water/cement ratios and plasticizer amounts (as surfactant for the MWNT) were investigated through compressive and flexural strength determinations. A mixing technique was proposed to address the issues related to dispersion of nanotubes within the cement matrix. The proposed mixing technique and design mix significantly enhanced the compressive and flexural strengths, as compared to control samples with no MWNT.


nanotechnology cement mortar carbon nanotubes dispersion technique tensile strength ductility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agullo, V. J., Ligero, V. C., Rico, D. P., Casas, M. J. G., Martinez, A. G., Royo, J. M. M., and Moreno, J. G. (2009). “Mortar and concrete reinforced with nanomaterials.” Nanotechnology in Construction Vol. 3, pp. 383–388, DOI:  10.1007/978-3-642-00980-8_52.Google Scholar
  2. ASTM C 109-07 (2008). Standard test method for compressive strength of hydraulic-cement mortars, West Conshohocken, PA.Google Scholar
  3. ASTM C 348-02 (2008). Standard test method for flexural strength of hydraulic-cement mortars, West Conshohocken, PA.Google Scholar
  4. ASTM C494/C494M-10 (2010). Standard specification for chemical admixtures for concrete, West Conshohocken, PA.Google Scholar
  5. ASTM C1017/C1017M-07 (2010). Standard specification for chemical admixture for use in producing flowing concrete, West Conshohocken, PA.Google Scholar
  6. Cwirzen, A., Habermehl-Cwirzen, K., and Penttala, V. (2008). “Surface decoration of carbon nanotubes and mechnical properties of cement/carbon nanotube composites.” Adv. Cem. Res., Vol. 20, pp. 65–73, DOI:  10.1680/adcr.2008.20.2.65.CrossRefGoogle Scholar
  7. Gay, C. and Sanchez, F. (2010). “Performance of carbon nanofibercement composites with a high-range water reducer.” Journal of the Transportation Research Board, No. 2142, 109–113, DOI:  10.3141/2142-16.CrossRefGoogle Scholar
  8. Han, B., Yu, X., and Kwon, E. (2009). “A self-sensing carbon nanotube/cement composite for traffic monitoring.” Nanotechnology, Vol. 20, No. 44, DOI:  10.1088/0957-4484/20/44/445501.
  9. Han, B., Yu, X., and Ou, Z. (2011). “Multifunctional and smart carbon nanotube reinforced cement-based materials.” Nanotechnology in Civil Infrastructure: A Paradigm Shift, Springer, pp. 1–47.CrossRefGoogle Scholar
  10. Han, B., Yang, Z., Shi, X., and Yu, X. (2013). “Transport properties of carbon-nanotube/cement composites.” Journal of Materials Engineering and Performance, Vol. 22, pp. 184–189, DOI:  10.1007/s11665-012-0228-x.CrossRefGoogle Scholar
  11. Konsta-Gdoutos, M. S., Metaxa, Z. S., and Shah, S. P. (2010). “Highly dispersed carbon nanotube reinforced cement based materials.” Cement and Concrete Research, Vol. 40, pp. 1052–1059, DOI:  10.1016/j.cemconres.2010.02.015.CrossRefGoogle Scholar
  12. Li, G. Y., Wang, P. M., and Zhao, X. (2007). “Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites.” Cement & Concrete Composites, Elsevier, Vol. 29, No. 5, pp. 377–382, DOI:  10.1016/j.cemconcomp.2006.12.011.CrossRefMathSciNetGoogle Scholar
  13. Li, H., Xiao, H., Yuan, J., and Ou, J. (2004). “Microstructure of cement mortar with nano-particles.” Composites: Part B, Vol. 35, pp. 185–189, DOI:  10.1016/S1359-8368(03)00052-0.CrossRefGoogle Scholar
  14. Maile, A. and Huang, C. P. (2006). The chemistry and physics of nanocement, NSF-REU, University of Delaware.Google Scholar
  15. Makar, J. M. and Chan, G. W. (2009). “Growth of cement hydration products on single walled carbon nanotubes.” Journal of the American Ceramic Society, Vol. 92, Issue 6, pp. 1303–1310, DOI:  10.1111/j.1551-2916.2009.03055.x.CrossRefGoogle Scholar
  16. Makar, J., Margeson, J., and Luh, J. (2005). “Carbon nanotube/cement composites-early results and potential application.” Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, B.C., Aug. 22–24, pp. 1–10.Google Scholar
  17. Manzur, T. and Yazdani, N. (2010). “Strength enhancement of cement mortar with carbon nanotubes: Early results and potential.” Journal of the Transportation Research Board, No. 2142, pp. 102–108, DOI:  10.3141/2142-15.CrossRefGoogle Scholar
  18. Musso, S., Tulliani, J.-M., Ferro, G., and Tagliaferro, A. (2009). “Influence of carbon nanotubes structure on the mechanical behavior of cement composites.” Composites Science and Technology, Vol. 69, No. 11–12, pp. 1985–1990, DOI:  10.1016/j.compscitech.2009.05.002.CrossRefGoogle Scholar
  19. Parveen, S., Rana, S., and Fangueiro, R. (2013). “A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites.” Journal of Nanomaterials, Hindawi Publishing Corporation, Vol. 2013, Article ID 710175, DOI:  10.1155/2013/710175.
  20. Salvetat, J.-P., Bonard, J.-M., Thomson, N. H., Kulik, A. J., Forró, L., Benoit, W., and Zuppiroli, L. (1999). “Mechanical properties of carbon nanotubes.” Applied Physics A, Vol. 69, pp. 255–260, DOI:  10.1007/s003399900114.CrossRefGoogle Scholar
  21. Walters, D. A., Ericson, L. M., Casavant, M. J., Liu, J., Colbert, D. T., Smith, K. A., and Smalley, R. E. (1999). “Elastic strain of freely suspended single-wall carbon nanotube ropes.” App. Phys. Let., Vol. 74, pp. 3803–3805, DOI:  10.1063/1.124185.CrossRefGoogle Scholar
  22. Yazdanbakhsh, A., Grasley, Z., Tyson, B., and Abu Al-Rub, R. K. (2010). “Distribution of carbon nanofibers and nanotubes in cementitious composites.” Journal of the Transportation Research Board, No. 2142, 89–95, DOI:  10.3141/2142-13.CrossRefGoogle Scholar
  23. Yu, M. F., Files, B. S., Arepaali, S., and Ruoff, R. S. (2000). “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties.” Phys. Ref. Lett., Vol. 84, No. 24, pp. 5552–5555, DOI:  10.1103/PhysRevLett.84.5552.CrossRefGoogle Scholar
  24. Zheng, L. X., O’Connell, M. J., Doorn, S. K., Liao, X. Z., Zhao, Y. H., Akhadov, E. A., Hoffbauer, M. A., Roop, B. J., Jia, Q. X., Dye, R. C., Peterson, D. E., Huang, S. M., Liu, J., and Zhu, Y. T. (2004). “Ultra long single-wall carbon nanotubes.” Nature Materials, Vol. 3, 673–676, DOI:  10.1038/nmat1216.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Dept. of Civil EngineeringUniversity of Engineering & TechnologyDhakaBangladesh
  2. 2.Dept. of Civil EngineeringUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations