KSCE Journal of Civil Engineering

, Volume 16, Issue 7, pp 1230–1242

A cell-based smoothed finite element method for three dimensional solid structures

  • Hung Nguyen-Xuan
  • Hiep Vinh Nguyen
  • Stephane Bordas
  • Timon Rabczuk
  • Marc Duflot
Research Paper

Abstract

This paper extends further the strain smoothing technique in finite elements to 8-noded hexahedral elements (CS-FEM-H8). The idea behind the present method is similar to the cell-based smoothed 4-noded quadrilateral finite elements (CS-FEM-Q4). In CSFEM, the smoothing domains are created based on elements, and each element can be further subdivided into 1 or several smoothing cells. It is observed that: 1) The CS-FEM using a single smoothing cell can produce higher stress accuracy, but insufficient rank and poor displacement accuracy; 2) The CS-FEM using several smoothing cells has proper rank, good displacement accuracy, but lower stress accuracy, especially for nearly incompressible and bending dominant problems. We therefore propose 1) an extension of strain smoothing to 8-noded hexahedral elements and 2) an alternative CS-FEM form, which associates the single smoothing cell issue with multi-smoothing cell one via a stabilization technique. Several numerical examples are provided to show the reliability and accuracy of the present formulation.

Keywords

3D elasticity cell-based smoothed finite element (CS-FEM) convergence stabilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belytschko, T. and Bendeman, L. P. (1993a). “Assumed strain stabilization of the eight node hexahedral element.” Computer Methods in Applied Mechanics and Engineering, Vol. 105, No. 2, pp. 225–260.MATHCrossRefGoogle Scholar
  2. Belytschko, T., Ong, J. S., Liu, W. K., and Kennedy, J. M. (1984). “Hourglass control in linear and non-linear problems.” Computer Methods in Applied Mechanics and Engineering, Vol. 43, No. 3, pp. 251–276.MATHCrossRefGoogle Scholar
  3. Bordas, S. and Natarajan, S. (2010). “On the approximation in the Smoothed Finite Element Method (SFEM).” International Journal for Numerical Methods in Engineering, Vol. 81, No. 5, pp. 660–670.MathSciNetMATHGoogle Scholar
  4. Bordas, S., Natarajan, S., Kerfriden, P., Augarde, C. E., Mahapatra, D. R., Rabczuk, T., and Pont, S. D. (2011). “On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM).” International Journal for Numerical Methods in Engineering, Vol. 86, Nos. 4–5, pp. 637–666.MATHCrossRefGoogle Scholar
  5. Bordas, S., Nguyen, V. P., Dunant, C., Nguyen-Dang, H., Guidoum, A. (2007). “An extended finite element library.” International Journal for Numerical Methods in Engineering, Vol. 71, No. 6, pp. 703–732.MATHCrossRefGoogle Scholar
  6. Bordas, S., Rabczuk, T., Nguyen-Xuan, H., Nguyen Vinh, P., Natarajan, S., Bog, T., Do Minh, Q., and Nguyen Vinh, H. (2010). “Strain smoothing in FEM and XFEM.” Computers and Structures, Vol. 88, Nos. 23–24, pp. 1419–1443.CrossRefGoogle Scholar
  7. Bordas, S., Rabczuk, T., and Zi, G. (2008). “Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment.” Engineering Fracture Mechanics, Vol. 75, No. 5, pp. 943–960.CrossRefGoogle Scholar
  8. Cugnon, F. (2000). Automatisation des calculs éléments nis dans le cadre de la méthode-p, PhD Thesis, Unv. of Liège.Google Scholar
  9. Dai, K.Y. and Liu, G. R. (2007b). “Free and forced vibration analysis using the smoothed finite element method (SFEM).” Journal Sound and Vibration, Vol. 301, Nos. 3–5, pp. 803–820.CrossRefGoogle Scholar
  10. Dai, K. Y., Liu, G. R., and Nguyen, T. T. (2007a). “An n-sided polygonal smoothed finite element method (nS-FEM) for solid mechanics.” Finite Elements in Analysis and Design, Vol. 43, Nos. 11–12, pp. 847–860.MathSciNetCrossRefGoogle Scholar
  11. Duot, M. (2006). “A meshless method with enriched weight functions for three-dimensional crack propagation.” International Journal for Numerical Methods in Engineering, Vol. 65, No. 12, pp. 1970–2006.CrossRefGoogle Scholar
  12. Fraeijs de Veubeke, B. (2001). “Displacement and equilibrium models in the finite element Method. In ‘Stress analysis’, Zienkiewicz O.C., Holister, G. (eds.) John Wiley and Sons, 1965: Chapter 9 145–197.” Reprinted in International Journal for Numerical Methods in Engineering, Vol. 52, No. 3, pp. 287–342.Google Scholar
  13. Fredriksson, M. and Ottosen, N. S. (2004). “Fast and accurate 4-node quadrilateral.” International Journal for Numerical Methods in Engineering, Vol. 61, No. 11, pp. 1809–1834.MATHCrossRefGoogle Scholar
  14. Fredriksson, M. and Ottosen, N. S. (2007). “Accurate eight-node hexahedral element.” International Journal for Numerical Methods in Engineering, Vol. 72, No. 6, pp. 631–657.MathSciNetMATHCrossRefGoogle Scholar
  15. Gee, M. W., Dohrmann, C. R., Key, S. W., and Wall, W. A. (2009). “A uniform nodal strain tetrahedron with isochoric stabilization.” International Journal for Numerical Methods in Engineering, Vol. 78, No. 4, pp. 429–443.MathSciNetMATHCrossRefGoogle Scholar
  16. Johnson, C. and Mercier, B. (1979). “Some equilibrium finite element methods for two-dimensional problems in continuum mechanics.” In: Energy methods in finite element analysis. Wiley-Interscience, Chichester, Sussex, England, pp. 213–224.Google Scholar
  17. Kelly, D. W. (1979). “Reduced integration to give equilibrium models for assessing the accuracy of finite element analysis.” In Proceedings of Third International Conference in Australia on FEM, University of New South Wales.Google Scholar
  18. Kelly, D.W. (1980). “Bounds on discretization error by special reduced integration of the Lagrange family of finite elements.” International Journal for Numerical Methods in Engineering, Vol. 15, No. 10, pp. 1489–1560.MathSciNetMATHCrossRefGoogle Scholar
  19. Liu, G. R. (2008). “A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods.” International Journal of Computation Methods, Vol. 2, No. 2, pp. 199–236.CrossRefGoogle Scholar
  20. Liu, G. R., Dai, K. Y., and Nguyen, T. T. (2007a). “A smoothed finite element for mechanics problems.” Computational Mechanics, Vol. 39, No. 6, pp. 859–877.MATHCrossRefGoogle Scholar
  21. Liu, G. R., Nguyen, T. T., Dai, K. Y., Lam, K. Y. (2007b). “Theoretical aspects of the smoothed finite element method (SFEM).” International Journal for Numerical Methods in Engineering, Vol. 71, No. 8, pp. 902–930.MathSciNetMATHCrossRefGoogle Scholar
  22. Liu, G. R., Nguyen-Thoi, T., Nguyen-Xuan, H., and Lam, K. Y. (2009a). “A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems.” Computer and Structures, Vol. 87, Nos. 1–2, pp. 14–26.CrossRefGoogle Scholar
  23. Liu, G. R., Nguyen-Thoi, T., and Lam, K. Y. (2009b). “An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids.” Journal of Sound and Vibration, Vol. 320, Nos. 4–5, pp. 1100–1130.CrossRefGoogle Scholar
  24. MacNeal, R. H. and Harder, R. L.(1985). “A proposed standard set of problems to test finite element accuracy.” Finite Elements in Analysis and Design, Vol. 1, No. 1, pp. 1–20.CrossRefGoogle Scholar
  25. Mijuca, D. and Berkovic, M. (1998). “On the efciency of the primalmixed finite element scheme.” Advances in Computational Structured Mechanics, Civil-Comp Press, pp. 61–69.Google Scholar
  26. Nguyen, T. T., Liu, G. R., Dai, K. Y., and Lam, K. Y. (2007). “Selective smoothed finite element method.” Tsinghua Science and Technology, Vol. 12, No. 5, pp. 497–508.MathSciNetCrossRefGoogle Scholar
  27. Nguyen, V. P., Rabczuk, T., Bordas, S., and Duot, M. (2008). “Meshfree methods: Review and key computer implementation aspects.” Mathematics and Computers in Simulation, Vol. 79, No. 3, pp. 763–813.MathSciNetMATHCrossRefGoogle Scholar
  28. Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., and Bordas. S. (2008). “A smoothed finite element method for shell analysis.” Computer Methods in Applied Mechanics and Engineering, Vol. 198, No. 2, pp. 165–177.MATHCrossRefGoogle Scholar
  29. Nguyen-Thoi, T., Liu, G. R., Lam, K. Y., and Zhang, G. Y. (2009). “A face-based smoothed finite element method (FS-FEM) for 3d linear and nonlinear solid mechanics problems using 4-node tetrahedral elements.” International Journal for Numerical Methods in Engineering, Vol. 78, No. 3, pp. 324–353.MathSciNetMATHCrossRefGoogle Scholar
  30. Nguyen-Xuan, H., Bordas, S., and Nguyen-Dang, H. (2008a). “Smooth finite element methods: Convergence, accuracy and properties.” International Journal for Numerical Methods in Engineering, Vol. 74, No. 2, pp. 175–208.MathSciNetMATHCrossRefGoogle Scholar
  31. Nguyen-Xuan, H., Bordas, S., and Nguyen-Dang, H. (2009b). “Addressing volumetric locking and instabilities by selective integration in smoothed finite elements.” Communications in Numerical Methods in Engineering, Vol. 25, No. 1, pp. 19–34.MathSciNetMATHCrossRefGoogle Scholar
  32. Nguyen-Xuan, H., Liu, G. R., Nguyen-Thoi, T., and Nguyen Tran, C. (2009c). “An edge-based smoothed finite element method (ESFEM) for analysis of two-dimensional piezoelectric structures.” Journal of Smart Material and Structures, Vol. 12, pp. 065015 (12pp.).CrossRefGoogle Scholar
  33. Nguyen-Xuan, H. and Nguyen-Thoi, T. (2009a). “A stabilized smoothed finite element method for free vibration analysis of Mindlin-Reissner plates.” Communications in Numerical Methods in Engineering, Vol. 25, No. 8, pp. 882–906.MathSciNetMATHCrossRefGoogle Scholar
  34. Nguyen-Xuan, H., Rabczuk, T., Bordas, S., and Debongnie, J. F. (2008b). “A smoothed finite element method for plate analysis.” Computer Methods in Applied Mechanics and Engineering, Vol. 197, Nos. 13–16, pp. 1184–1203.MATHCrossRefGoogle Scholar
  35. Puso, M. A., Chen, J. S., Zywicz, E., and Elmer, W. (2008). “Meshfree and finite element nodal integration methods.” International Journal for Numerical Methods in Engineering, Vol. 74, No. 3, pp. 416–446.MathSciNetMATHCrossRefGoogle Scholar
  36. Puso, M. A. and Solberg, J. (2006). “A stabilized nodally integrated tetrahedral.” International Journal for Numerical Methods in Engineering, Vol. 67, No. 6, pp. 841–867.MathSciNetMATHCrossRefGoogle Scholar
  37. Rabczuk, T. and Belytschko, T. (2004b). “Cracking particles: A simplied meshfree method for arbitrary evolving cracks.” International Journal for Numerical Methods in Engineering, Vol. 61, No. 13, pp. 2316–2343.MATHCrossRefGoogle Scholar
  38. Rabczuk, T., Belytschko, T., and Xiao, S. P. (2004a). “Stable particle methods based on lagrangian kernels.” Computer Methods in Applied Mechanics and Engineering, Vol. 193, Nos. 12–14, pp. 1035–1063.MathSciNetMATHCrossRefGoogle Scholar
  39. Rabczuk, T., Bordas, S., and Zi, G. (2007). “A three-dimensional meshfree method for continuous crack initiation, nucleation and propagation in statics and dynamics.” Computational Mechanics, Vol. 40, No. 3, pp. 473–495.MATHCrossRefGoogle Scholar
  40. Richardson, L. F. (1910). “The approximate arithmetical solution by finite differences of physical problems.” Trans. Roy. Soc. (London), Vol. A210, pp. 307–357.Google Scholar
  41. Timoshenko, S. P. and Goodier, J. N. (1987). Theory of elasticity (3rd ed.), McGraw-Hill, New York.Google Scholar
  42. Zienkiewicz, O. C. and Taylor, R. L. (2000). The finite element method, 5th Edition, Butterworth Heinemann, Oxford.MATHGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hung Nguyen-Xuan
    • 1
    • 2
  • Hiep Vinh Nguyen
    • 3
  • Stephane Bordas
    • 4
  • Timon Rabczuk
    • 5
  • Marc Duflot
    • 6
  1. 1.Dept. of Mechanics, Faculty of Mathematics and Computer ScienceUniversity of Science, Vietnam National University — HCMHochiminhVietnam
  2. 2.Division of Computational MechanicsTon Duc Thang UniversityHochiminhVietnam
  3. 3.Faculty of Civil EngineeringHo Chi Minh City University of TransportHochiminhVietnam
  4. 4.School of Engineering, Institute of Theoretical, Applied and Computational MechanicsCardiff UniversityWalesUK
  5. 5.Institute of Structural MechanicsBauhaus-University WeimarWeimarGermany
  6. 6.CENAEROGosseliesBelgium

Personalised recommendations