KSCE Journal of Civil Engineering

, Volume 16, Issue 2, pp 229–238 | Cite as

Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia

  • Hyun Woo Kim
  • Kyotaek Hwang
  • Qiaozhen Mu
  • Seung Oh Lee
  • Minha Choi
Water Engineering

Abstract

Evapotranspiration (ET), or the sum of water released to the atmosphere from ground surfaces, intercepts canopy precipitation through evaporation and plant transpiration and is one of the most significant components in the water cycle. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) 16 global terrestrial ET products were validated at 17 flux tower locations in Asia. Overall, overestimations due to energy balance misclosure distorted the trend of the data at nine locations [r: 0.27–0.82; bias: −21.41–2.38 mm 8-d−1; Root Mean Square Error (RMSE): 6.12–21.81 mm 8-d−1]. Regardless of variation in the scattering patterns, good agreements between MODIS-based ET and ET measured at the flux towers were observed at five locations (r: 0.50–0.76; bias: −1.42–1.99 mm 8-d−1; RMSE: 1.99–8.96 mm 8-d−1). Underestimation at one site (r = 0.28, bias = −17.00 mm 8-d−1, RMSE = 17.41 mm 8-d−1) was accompanied by mismatches at two sites (r = 0.12–0.18; bias = −4.19 — −0.04 mm 8-d−1, RMSE = 5.76–7.66 mm 8-d−1). The best performances of the MOD16 ET algorithm were observed at sites with forested land cover, but no substantial differences were found under a variety of climate conditions. This study is the first comprehensive trial to validate global terrestrial MODIS ET in Asia, showing that a MODIS global terrestrial ET product can estimate actual ET with reasonable accuracy. We believe that our results can be used as baseline ET values for satellite image-based ET mapping research in South Korea.

Keywords

evapotranspiration land cover Asiaflux MODIS MOD16 global terrestrial ET product 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adger, W., Arnell, N., and Tompkins, E. (2005). “Successful adaptation to climate change across scales.” Global Environmental Change Part A, Vol. 15, No. 2, pp. 77–86.CrossRefGoogle Scholar
  2. Allen, R., Tasumi, M., and Trezza, R. (2007). “Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model.” Journal of Irrigation and Drainage Engineering, Vol. 133, No. 4, pp. 380–394.CrossRefGoogle Scholar
  3. Aubinet, M., Berbigier, P., Bernhofer, C. H., Cescatti, A., Feigenwinter, C., Granier, A., Grunwald, T. H., Havrankova, K., Heinesch, B., Longdoz, B., Marcolla, B., Montagnani, L., and Sedlak, P. (2005). “Comparing CO2 storage and advection conditions at night at different CARBOEUROFLUX sites.” Boundary-Layer Meteorology, Vol. 116, No. 1, pp. 63–93.CrossRefGoogle Scholar
  4. Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C. H., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S. (2001). “FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities.” Bulletin of the American Meteorological Society, Vol. 82, No. 11, pp. 2415–2434.CrossRefGoogle Scholar
  5. Batra, N., Islam, S., Venturini, V., Bisht, G., and Jiang, L. (2006). “Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains.” Remote Sensing of Environment, Vol. 103, No. 1, pp. 1–15.CrossRefGoogle Scholar
  6. Blyth, E. M. and Dolman, A. J. (1995). “The roughness length for heat of sparse vegetation.” Journal of Applied Meteorology; Vol. 34, No. 2, pp. 583–585.CrossRefGoogle Scholar
  7. Brutsaert, W. (1982). Evaporation into the atmosphere: Theory, history, and applications, D. Reidel, Dordrecht, Holland.Google Scholar
  8. Caird, M. A., Richards, J. H., and Donovan, L. A. (2007). “Nighttime stomatal conductance and transpiration in C3 and C4 plants.” Plant Physiology, Vol. 143, No. 1, pp. 4–10.CrossRefGoogle Scholar
  9. Choi, M., Kim, T., Park, M., and Kim, S. (2011). “Evapotranspiration estimation using the Landsat-5 Thematic Mapper image over the Gyungan watershed in Korea.” International Journal of Remote Sensing, DOI: 10.1080/01431161.2010.486417Google Scholar
  10. Choi, M., Kustas, W. P., Anderson, M. C., Allen, R. G., Li, F., and Kjaersgaard, J. H. (2009). “An intercomparison of three remote sensing-based surface energy balance algorithms over a corn and soybean production region (Iowa, US) during SMACEX.” Agricultural and Forest Meteorology, Vol. 149, No. 12, pp. 2082–2097.CrossRefGoogle Scholar
  11. Cleugh, H. A., Leuning, R., Mu, Q., and Running, S. W. (2007). “Regional evaporation estimates from flux tower and MODIS satellite data.” Remote Sensing of Environment, Vol. 106, No. 3, pp. 285–304.CrossRefGoogle Scholar
  12. Daley, M. J. and Phillips, N. G. (2006). “Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest.” Tree Physiology, Vol. 26, No. 4, pp. 411–419.CrossRefGoogle Scholar
  13. Demarty, J., Chevallier, F., Friend, A. D., Viovy, N., Piao, S., Ciais, P. (2007). “Assimilation of global MODIS leaf area index retrievals within a terrestrial biosphere model.” Geophysical Research Letters, Vol. 34, No. 15, L15402.Google Scholar
  14. Feddema, J. J., Oleson, K. W., Bonan, G. B., Mearns, L. O., Buja, L. E., Meehl, G. A., and Washington, W. M. (2005). “Atmospheric science: The importance of land-cover change in simulating future climates.” Science, Vol. 310, pp. 1674–1678.CrossRefGoogle Scholar
  15. Fisher, J. B., DeBiase, T. A., Qi, Y., Xu, M., and Goldstein, A. H. (2005). “Evapotranspiration models compared on a Sierra Nevada forest ecosystem.” Environmental Modelling and Software, Vol. 20, No. 6, pp. 783–796.CrossRefGoogle Scholar
  16. Fisher, J., Tu, K., and Baldocchi, D. (2008). “Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCPII data, validated at 16 FLUXNET sites.” Remote Sensing of Environment, Vol. 112, No. 3, pp. 901–919.CrossRefGoogle Scholar
  17. Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D., Strahler, A. H., Woodcock, C. E., Gopal, S., Schneider, A., Cooper, A., Baccini, A., Gao, F., and Schaaf, C. (2002). “Global land cover mapping from MODIS: Algorithms and early results.” Remote Sensing of Environment, Vol. 83, No. 1, pp. 287–302.CrossRefGoogle Scholar
  18. Glenn, E., Huete, A., Nagler, P., Hirschboeck, K., and Brown, P. (2007). “Integrating remote sensing and ground methods to estimate evapotranspiration.” Critical Reviews in Plant Sciences, Vol. 26, No. 3, pp. 139–168.CrossRefGoogle Scholar
  19. Gowda, P., Howell, T., Evett, S., Chavez, J., and New, L. (2008). “Re mote sensing of contrasting tillage practices in the Texas Panhandle.” International Journal of Remote Sensing, Vol. 29, No. 12, pp. 3477–3487.CrossRefGoogle Scholar
  20. Heinsch, F. A., Zhao, M., Running, S. W., Kimball, J. S., Nemani, R. R., Davis, K. J., Bolstad, P. V., Cook, B. D., Desai, A. R., Ricciuto, D. M., Law, B. E., Oechel, W. C., Kwon, H., Luo, H., Wofsy, S. C., Dunn, A. L., Munger, J. W., Baldocchi, D. D., Xu, L., Holliner, D. Y., Richardson, A. D., Stoy, P. C., Siqueira, M. B. S., Monson, R. K., Burns, S. P., and Flanagan, L. B. (2006). “Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 7, pp. 1908–1925.CrossRefGoogle Scholar
  21. Hollinger, D. and Richardson, A. (2005). “Uncertainty in eddy covariance measurements and its application to physiological models.” Tree Physiology, Vol. 25, No. 7, pp. 873–885.CrossRefGoogle Scholar
  22. Huete, A. R., Restrepo-Coupe, N., Ratana, P., Didan, K., Saleska, S. R., Ichii, K., Panuthai, S., and Gamo, M. (2008). “Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in Monsoon Asia.” Agricultural and Forest Meteorology, Vol. 148, No. 5, pp. 748–760.CrossRefGoogle Scholar
  23. Jiang, L. and Islam, S. (2001). “Estimation of surface evaporation map over southern Great Plains using remote sensing data.” Water Resources Research, Vol. 37, No. 2, pp. 329–340.CrossRefGoogle Scholar
  24. Jin, Y., Schaaf, C. B., Gao, F., Li, X., Strahler, A. H., Lucht, W., and Liang, S. (2003). “Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 1. Algorithm performance.” Journal of Geophysical Research, Vol. 108, pp. 4158–4170.CrossRefGoogle Scholar
  25. Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G. B., Cescatti, A., Chen, J., de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J. S., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K. W., Papale, D., Richardson, A. D., Roupsard, O., Running, S. W., Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S., and Zhang, K. (2010). “Recent decline in the global land evapotranspiration trend due to limited moisture supply.” Nature, Vol. 467, pp. 951–954.CrossRefGoogle Scholar
  26. Kalma, J., McVicar, T., and McCabe, M. (2008). “Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data.” Surveys in Geophysics, Vol. 29, No. 4, pp. 421–469.CrossRefGoogle Scholar
  27. Kim, J. Lee, D., Hong, J., Kang, S., Kim, S.-J., Moon, S.-K., Lim, J.-H., Son, Y., Lee, J., Kim, S., Woo, N., Kim, K., Lee, B., Lee, B.-L., and Kim, S. (2006). “HydroKorea and CarboKorea: Cross-scale studies of ecohydrology and biogeochemistry in a heterogeneous and complex forest catchment of Korea.” Ecological Research, Vol. 21, No. 6, pp. 881–889.CrossRefGoogle Scholar
  28. Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F. (2006). “World Map of the Koppen-Geiger climate classification updated.” Meteorologische Zeitschrift, Vol. 15, No. 3, pp. 259–264.CrossRefGoogle Scholar
  29. Kustas, W., and Anderson, M. (2009). “Advances in thermal infrared remote sensing for land surface modeling.” Agricultural and Forest Meteorology, Vol. 149, No. 12, pp. 2071–2081.CrossRefGoogle Scholar
  30. Kustas, W., Anderson, M., Norman, J., and Li, F. (2007). “Utility of radiometric-aerodynamic temperature relations for heat flux estimation.” Boundary-Layer Meteorology, Vol. 122, No. 1, pp. 167–187.CrossRefGoogle Scholar
  31. Kustas, W., Norman, J., Schmugge, T., and Anderson, M. (2004). “Mapping surface energy fluxes with radiometric temperature.” Thermal Remote Sensing in Land Surface Processes, pp. 205–253.Google Scholar
  32. Kustas, W. P. and Norman, J. M. (1999). “Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover.” Agricultural and Forest Meteorology, Vol. 94, No. 1, pp. 13–29.CrossRefGoogle Scholar
  33. Lhomme, J., Chehbouni, A., and Monteny, B. (2000). “Sensible heat flux-radiometric surface temperature relationship over sparse vegetation: Parameterizing B-1.” Boundary-Layer Meteorology, Vol. 97, No. 3, pp. 431–457.CrossRefGoogle Scholar
  34. Li, F., Kustas, W., Prueger, J., Neale, C., and Jackson, T. (2005). “Utility of remote sensing-based two-source energy balance model under low-and high-vegetation cover conditions.” Journal of Hydrometeorology, Vol. 6, No. 6, pp. 878–891.CrossRefGoogle Scholar
  35. Loarie, S. R., Lobell, D. B., Asner, G. P., Mu, Q., and Field, C. B. (2011). “Direct impacts on local climate of sugar-cane expansion in Brazil.” Nature Climate Change, Vol. 1, pp. 105–109.CrossRefGoogle Scholar
  36. Mizoguchi, Y., Hirata, R., Kobayashi, Y., and Satoko, Y. (2008). “Introduction to the site information on ASiaFlux website and overview of tower flux observation sites in Asia.” AsiaFlux Newsletter, Vol. 26, pp. 1–4.Google Scholar
  37. Monteith, J. L. (1965). “Evaporation and environment.” Symposia of the Society for Experimental Biology, Vol. 19, pp. 205–234.Google Scholar
  38. Montenegro, A., Eby, M., Mu, Q., Mulligan, M., Weaver, A. J., Wiebe, E. C., and Zhao, M. (2009). “The net carbon drawdown of small scale afforestation from satellite observations.” Global and Planetary Change, Vol. 69, No. 4, pp. 195–204.CrossRefGoogle Scholar
  39. Mu, Q., Heinsch, F., Zhao, M., and Running, S. (2007). “Development of a global evapotranspiration algorithm based on MODIS and global meteorology data.” Remote Sensing of Environment, Vol. 111, No. 4, pp. 519–536.CrossRefGoogle Scholar
  40. Mu, Q., Jones, L., Kimball, J., McDonald, K., and Running, S. (2009). “Satellite assessment of land surface evapotranspiration for the pan-Arctic domain.” Water Resources Research, Vol. 45, No. 9, W09420.CrossRefGoogle Scholar
  41. Mu, Q., Zhao, M., and Running, S. W. (2011). “Improvements to a MODIS global terrestrial evapotranspiration algorithm.” Remote Sensing of Environment, Vol. 115, No. 8, pp. 1781–1800.CrossRefGoogle Scholar
  42. Oren, R. Sperry, J. S., Katul, G. G., Pataki, D. E., Ewers, B. E., Phillips, N., and Schafer, K. V. R. (1999). “Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapour pressure deficit.” Plant, Cell and Environment, Vol. 22, No. 12, pp. 1515–1526.CrossRefGoogle Scholar
  43. Salomon, J., Schaaf, C., Strahler, A., Gao, F., and Jin, Y. (2006). “Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the aqua and terra platforms.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 6, pp. 1555–1565.CrossRefGoogle Scholar
  44. Schaaf, C. Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T., Strugnell, N. C., Zhang, X., Jin, Y., Muller, J.-P., Lewis, P., Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C., d’Entremont, R. P., Hu, B., Liang, S., Privette, J. L., and Roy, D. (2002). “First operational BRDF, albedo nadir reflectance products from MODIS.” Remote Sensing of Environment, Vol. 83, Nos. 1–2, pp. 135–148.CrossRefGoogle Scholar
  45. Schmid, H. (1997). “Experimental design for flux measurements: matching scales of observations and fluxes.” Agricultural and Forest Meteorology, Vol. 87, Nos. 2–3, pp. 179–200.CrossRefGoogle Scholar
  46. Su, Z., Schmugge, T., Kustas, W. P., and Massman, W. J. (2001). “An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere.” Journal of Applied Meteorology, Vol. 40, No. 11, pp. 1933–1951.CrossRefGoogle Scholar
  47. Sumner, D. M. and Jacobs, J. M. (2005). “Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration.” Journal of Hydrology, Vol. 308, pp. 81–104.CrossRefGoogle Scholar
  48. Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., Prueger, J. H., Starks, P. J., and Wesely, M. L. (2000). “Correcting eddy-covariance flux underestimates over a grassland.” Agricultural and Forest Meteorology, Vol. 103, No. 3, pp. 279–300.CrossRefGoogle Scholar
  49. Venturini, V., Islam, S., and Rodriguez, L. (2008). “Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model.” Remote Sensing of Environment, Vol. 112, pp. 132–141.CrossRefGoogle Scholar
  50. Wang, K., Li, Z., and Cribb, M. (2006). “Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter.” Remote Sensing of Environment, Vol. 102, pp. 293–305.CrossRefGoogle Scholar
  51. Wilson, K. B., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B. E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R., and Verma, S. (2002). “Energy balance closure at FLUXNET sites.” Agricultural and Forest Meteorology, Vol. 113, pp. 223–243.CrossRefGoogle Scholar
  52. Yi, C., Ricciuto, D., Li, R., Wolbeck, J., Xu, X., Nilsson, M., Frank, J., Massman, W. J. (2010). “Climate control of terrestrial carbon exchange across biomes and continents.” Environmental Research Letters, Vol. 5, No. 3, 034007.CrossRefGoogle Scholar
  53. Zeppel, M., Tissue, D., Taylor, D., MacInnis-Ng, C., and Eamus, D. (2010). “Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies.” Tree Physiology, Vol. 30, No. 8, pp. 988–1000.CrossRefGoogle Scholar
  54. Zhang, Y. K. and Schilling, K. E. (2006). “Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: A Field observation and analysis.” Journal of Hydrology, Vol. 319, Nos. 1–4, pp. 328–338.CrossRefGoogle Scholar
  55. Zhao, M., Running, S. W., and Nemani, R. R. (2006). “Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses.” Journal of Geophysical Research, Vol. 111, No. G1, G01002.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hyun Woo Kim
    • 1
  • Kyotaek Hwang
    • 1
  • Qiaozhen Mu
    • 2
  • Seung Oh Lee
    • 3
  • Minha Choi
    • 1
  1. 1.Dept. of Civil and Environmental EngineeringHanyang UniversitySeoulKorea
  2. 2.Numerical Terradynamic Simulation Group, College of Forestry and ConservationThe University of MontanaMissoulaUSA
  3. 3.School of Urban and Civil EngineeringHongik UniversitySeoulKorea

Personalised recommendations