KSCE Journal of Civil Engineering

, Volume 15, Issue 6, pp 995–1003 | Cite as

Surface water quality assessment in the central part of Bangladesh using multivariate analysis

  • Mohammad A. H. BhuiyanEmail author
  • M. A. Rakib
  • S. B. Dampare
  • S. Ganyaglo
  • Shigeyuki Suzuki


This study deals with the natural and anthropogenic processes that influence the surface water quality in the central Bangladesh using multivariate statistical techniques. The investigation shows that the Total Suspended Solids (TSS), Total Dissolved Solids (TDS), turbidity, Electrical Conductivity (EC), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), NO3 , SO4 2−, Cl, PO4 3− and microbial loads are higher than the Bangladesh standards. R-mode CA groups all 10 sampling sites into 3 statistically significant clusters, reflecting the different physicochemical characteristics and pollution levels of the sites. R-mode CA suggests common sources (industrial, agriculture and urban sewage) for TSS, EC, turbidity, temperature, COD, PO4 3−, SO4 2−, and Fecal Coliform (FC). The PCA/FA identifies 5 dominant factors as responsible for the data structure, explaining 88.3% of the total variance in the dataset. The multiple anthropogenic (i.e., industrial, agricultural, urban sewage) and natural sources (soil erosion, aquatic hyacinths and weeds) of water quality parameters have been identified by PCA. This work is believed to serve as a baseline data for further studies in the Turag River system as well as inform decision-makers on the proper design of sampling and analytical protocols for effective pollution management of the surface water quality in the basin.


water quality cluster analysis principal component analysis Dhaka City 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. APHA (1995). Standard methods for the examination of water and wastewater, 19th Ed., Washington, D.C.: American Public Health Association.Google Scholar
  2. Aruga, R., Gastaldi, D., Negro, G., and Ostacoli, G. (1995). “Pollution of a river basin and its evolution with time studied by multivariate statistical analysis.” Anal. Chim. Acta, Vol. 310, No. 1, pp. 15–25.CrossRefGoogle Scholar
  3. Astel, A., Glosiska, G., Sobczyski, T., Boszke, L., Simeonov, V., Siepak, J. (2006). “Chemometrics in assessment of sustainable development rule implementation.” CEJCh., Vol. 4, No. 3, pp. 543–564.Google Scholar
  4. Astel, A., Tsakovski, S., Barbieri, P., and Simeonov, V. (2007). “Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets.” Water Res., Vol. 41, No. 19, pp. 4566–4578.CrossRefGoogle Scholar
  5. Astel, A. Tsakovski, S., Simeonov, V., Reisenhofer, E., Piselli, S., and Barbieri, P. (2008). “Multivariate classification and modeling in surface water pollution estimation.” Anal. Bioanal. Chem., Vol. 390, No. 5, pp. 1283–1292.CrossRefGoogle Scholar
  6. Baghel, V. S., Gopal, K., Dwivedi, S., and Tripathi, R. D. (2005). “Bacterial indicators of faecal Contamination of the Gangetic river system right at its source.” Ecol. Indicat., Vol. 5, No. 1, pp. 49–56.CrossRefGoogle Scholar
  7. Bracken, C. L., Hendricks, C. W., and Harding, A. K. (2006). “Apparent bias in river water inoculum following centrifugation.” J. Microbio. Method., Vol. 67, No. 2, pp. 304–309.CrossRefGoogle Scholar
  8. Clesceri, L. S., Greenberg, A. E., and Eaton, A. D. (1998). Standard methods for the examination of water and wastewater, 20th Ed. American Public Health Association, Washington, D.C.Google Scholar
  9. DoE (1997). “Industrial effluents quality standard for Bangladesh.” Bangladesh Gazette Additional.Google Scholar
  10. Einax, J. W., Zwanziger, H. W., and Geib, S. (1997). Chemometrics in environmental analysis, Wiley, Weinheim.CrossRefGoogle Scholar
  11. Elmanama, A. A., Afifi, S., and Bahr, S. (2006). “Seasonal and spatial variation in the monitoring parameters of Gaza Beach during 200–2003.” Environ. Res., Vol. 101, No. 1, pp. 25–33.CrossRefGoogle Scholar
  12. Fatoki, O. S., Muyima, N. Y. O., and Lujiza, N. (2001). “Situation analysis of water quality in the Umtata River catchment.” Water SA, Vol. 27, No. 4, pp. 467–473.Google Scholar
  13. Helena, B., Pardo, R., Vega, M., Barrado, E., Fernández, J. M., Fernández, L. (2000). “Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis.” Water Res., Vol. 34, No. 3, pp. 807–816.CrossRefGoogle Scholar
  14. Howitt, D. and Cramer, D. (2005). Introduction to SPSS in psychology: With supplement for releases 10, 11, 12 and 13, Pearson, Harlow.Google Scholar
  15. Jannasch, H. (1968). “Competitive elimination of Enterobacteriaceae from seawater.” Appl. Microbio., Vol. 16, No. 10, pp. 1616–1618.Google Scholar
  16. Johnston, M. W. and Williams, J. S. (2006). Field comparison of optical and clark cell dissolved oxygen sensors in the tualatin river, Oregon, 2005, U.S. Geological Survey Open-File Report 2006-1047, p. 11.Google Scholar
  17. Kowalkowski, T., Zbytniewski, R., Szpejna, J., and Buszewski, B. (2006). “Application of chemometrics in river water classification.” Water Res., Vol. 40, No. 1, pp. 744–752.CrossRefGoogle Scholar
  18. Liu, C. W., Lin, K. H., and Kuo, Y. M. (2003). “Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan.” Sci. Tot. Environ., Vol. 313, Nos. 1–3, pp. 77–89.Google Scholar
  19. Lu, R. S., and Lo, S. L. (2002). “Diagnosing reservoir water quality using self-organizing maps and fuzzy theory.” Water Res., Vol. 36, No. 9, pp. 2265–2274.CrossRefGoogle Scholar
  20. Marengo, E., Gennaro, M. C., Giacosa, D., Abrigo, C., Saini, G., and Avignone, M. T. (1995). “How chemometrics can helpfully assist in evaluating environmental data Lagoon water.” Anal. Chim. Acta, Vol. 317, Nos. 1–3, pp. 53–63.CrossRefGoogle Scholar
  21. Masamba, W. R. L. and Mazvimavi, D. (2008). “Impact on water quality of land uses along Thamalakane-Boteti River: An outlet of the Okavango Delta.” Physic. Chem. Earth, Vol. 33, pp. 687–694.CrossRefGoogle Scholar
  22. McKenna, J.r., J. E. (2003). “An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis.” Environ. Mode. Softw., Vol. 18, No. 3, pp. 205–220.CrossRefGoogle Scholar
  23. Mendiguchía, C., Moreno, C., Galindo-Riaòo, D. M., and Garcá-Vargas, M. (2004). “Using chemometric tools to assess anthropogenic effects in river water. A case study: Guadalquivir (Spain).” Anal. Chim. Acta, Vol. 515, No. 1, pp. 143–149.CrossRefGoogle Scholar
  24. Mvungi, A., Hranova, R. K., and Love, D. (2003). “Impact of home industries on water quality in a tributary of the Marimba River, Harare: implications for urban water management.” Physic. Chem. Earth, Vol. 28, Nos. 20–27, pp. 1131–1137.CrossRefGoogle Scholar
  25. Nkansah, K., Dawson-Andoh, B., Slahor, J. (2010). “Rapid characterization of biomass using near infrared spectroscopy coupled with multivariate data analysis: Part 1 yellow-poplar (Liriodendron tulipifera L.).” Bioresour. Technol., Vol. 101, No. 2, pp. 4570–4576.CrossRefGoogle Scholar
  26. Ntengwe, F. W. (2006). “Pollutant loads and water quality in streams of heavily populated and industrialized towns.” Physic. Chem. Earth, Vol. 31, Nos. 15–16, pp. 832–839.CrossRefGoogle Scholar
  27. Otto, M. (1998). “Multivariate methods.” In: Kellner, R., Mermet, J.M., Otto, M., Widmer, H. M. (Eds.), Analytical Chemistry, WileyeVCH, Weinheim.Google Scholar
  28. Ouyang, Y., Nkedi-Kizza, P., Wu, Q. T., Shinde, D., and Huang, C. H. (2006). “Assessment of seasonal variations in surface water quality.” Water Res., Vol. 40, No. 20, pp. 3800–3810.CrossRefGoogle Scholar
  29. Palamuleni, L. G., Dolozi, M. B., Masamba, W. R. L., and Claudio-Jeke, A. (2004). “Bacteriological contamination of water in urban poor areas: A case study of South Lunzu Township, Blantyre Malawi.” Malawi J. Sci. Techno., Vol. 7, No. 1, pp. 26–33.Google Scholar
  30. Qadir, A., Malik, R. N., and Husain, S. Z. (2007). “Spatio-temporal variations in water quality of Nullah Aik-tributary of the river Chenab, Pakistan.” Environ. Monit. Assess., Vol. 140, Nos. 1–3, pp. 43–59.Google Scholar
  31. Reghunath, R., Murthy, T. R. S., and Raghavan, B. R. (2002). “The utility of multivariate statistical techniques in hydrogeochemical studies: An example from Karnataka, India.” Water Res., Vol. 36, No. 10, pp. 2437–2442.CrossRefGoogle Scholar
  32. Rozen, Y. and Belkin, S. (2001). “Survival of enteric bacteria in seawater.” FEMS Microbio. Rev., Vol. 25, No. 5, pp. 513–529.CrossRefGoogle Scholar
  33. Sarbu, C. and Pop, H. F. (2005). “Principal component analysis versus fuzzy principal component analysis. A case study: The quality of Danube water (1985e 1996).” Talanta, Vol. 65, No. 5, pp. 1215–1220.CrossRefGoogle Scholar
  34. Shrestha, S. and Kazama, F. (2007). “Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan.” Environ. Mode. Softw., Vol. 22, No. 4, pp. 464–475.CrossRefGoogle Scholar
  35. Simeonov, V., Stefanov, S., and Tsakovski, S. (2000). “Environmetrical treatment of water quality survey data from Yantra River, Bulgaria.” Microch. Acta, Vol. 134, Nos. 1–2, pp. 15–21.CrossRefGoogle Scholar
  36. Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., and Anthemidis, A. (2003). “Assessment of the surface water quality in Northern Greece.” Water Res., Vol. 37, No. 17, pp. 4119–4124.CrossRefGoogle Scholar
  37. Simeonova, P., and Simeonov, V. (2007). “Chemometrics to evaluate the quality of water sources for human consumption.” Microch. Acta, Vol. 156, Nos. 3–4, pp. 315–320.Google Scholar
  38. Singh, K. P., Malik, A., Mohan, D., and Sinha, S. (2004). “Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) — A case study.” Water Res., Vol. 38, No. 18, pp. 3980–3992.CrossRefGoogle Scholar
  39. Stefanov, S., Simeonov, V., and Tsakovski, S. (1999). “Chemometrical analysis of waste water monitoring data from Yantra river basin, Bulgaria.” Toxicol. Environ. Chem., Vol. 70, pp. 473–482.CrossRefGoogle Scholar
  40. Tabachnick, B. G. and Fidell, L. S. (2007). Using multivariate statistics, Pearson/Allyn and Bacon, London.Google Scholar
  41. USEPA (1985). Test methods for Escherichia coli and enterococci in water by the membrane filter procedure (Method #1103.1), EPA 600/4-85-076, U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH.Google Scholar
  42. Vega, M., Pardo, R., Barrado, E., and Deban, L. (1998). “Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis.” Water Res., Vol. 32, No. 12, pp. 3581–3592.CrossRefGoogle Scholar
  43. WHO (2004). Guidelines for drinking-water quality, Third Ed. WHO, Geneva, Switzerland.Google Scholar
  44. Wunderlin, D. A., Diaz, M. P., Ame, M. V., Pesce, S. F., Hued, A. C., and Bistoni, M. A. (2001). “Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia river basin (Cordoba, Argentina).” Water Res., Vol. 35, No. 12, pp. 2881–2894.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mohammad A. H. Bhuiyan
    • 1
    • 2
    Email author
  • M. A. Rakib
    • 2
  • S. B. Dampare
    • 3
    • 4
  • S. Ganyaglo
    • 4
  • Shigeyuki Suzuki
    • 3
  1. 1.Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan
  2. 2.Dept. of Environmental SciencesJahangirnagar UniversityDhakaBangladesh
  3. 3.Dept. of Earth SciencesOkayama UniversityOkayamaJapan
  4. 4.National Nuclear Research InstituteGhana Atomic Energy CommissionLegon-AccraGhana

Personalised recommendations