Advertisement

Cyclostationary Modeling of Surface Electromyography Signal During Gait Cycles and Its Application for Cerebral Palsy Diagnosis

  • Liang Yu (余亮)Email author
  • Li Yan (严莉)
  • Mengjie Chen (陈梦婕)
  • Liangchao Dong (董良超)
Article
  • 8 Downloads

Abstract

Cerebral palsy (CP) is a group of permanent movement disorders that appear in early childhood. The electromyography (EMG) signal analysis and the gait analysis are two most commonly used methods in the clinic. In this paper, a cyclostationary model of the EMG signal is proposed. The model can combine the aforementioned two methods. The EMG signal acquired during the gait cycles is assumed to be cyclostationary due to the physiological characteristics of the EMG signal production. Then, the spectral correlation density is used to analyze the cyclic frequency (corresponding to the gait cycles) and spectral frequency (the frequency of EMG signal) in a waterfall representation of the two kinds of frequencies. The experiments show that the asymptomatic (normal) subjects and symptomatic subjects (with CP) can be distinguished from the spectral correlation density in a range of cyclic frequencies.

Key words

electromyography (EMG) signal gait cycle spectral correlation density cyclostationary modeling cerebral palsy (CP) diagnosis 

Nomenclature

f

Physical frequency, Hz

fr

Mean of firing rate, Hz

Nf

Number of fibers in a given motor unit

Nmu

Number of motor unit in a given muscle

r

Distance between endplate and observation point, mm

S

Area of an element of the cross-sectional disk, mm2

t

Time, s

Ti

Arrival time of each gait cycle, s

v

Velocity of signal conduction, mm/s

x0

Axial position of the observation point P(x0, y0), mm

y0

Radical position of the observation point P(x0, y0), mm

α

Gait cycle frequency, Hz

σi

Intracellular conductivity, mm/s

σe

Tissue conductivity, mm/s

σx

Axial conductivity, mm/s

σy

Radical conductivity, mm/s

ϕl

Each single fiber action potential contained in a given motor unit

CLC number

R 318 

Document code

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    RICHARDS C L, MALOUIN F. Cerebral palsy: Definition, assessment and rehabilitation [J]. Handbook of Clinical Neurology, 2013, 111: 183–195.CrossRefGoogle Scholar
  2. [2]
    BINDER H, ENG G D. Rehabilitation management of children with spastic diplegic cerebral palsy [J]. Archives of Physical Medicine and Rehabilitation Home, 1989, 70(6): 482–489.CrossRefGoogle Scholar
  3. [3]
    BELL K J, ˜OUNPUU S, DELUCA P A, et al. Natural progression of gait in children with cerebral palsy [J]. Journal of Pediatric Orthopaedics, 2002, 22(5): 677–682.Google Scholar
  4. [4]
    ROMEO D M M, GUZZETTA A, SCOTO M, et al. Early neurologic assessment in preterm-infants: Integration of traditional neurologic examination and observation of general movements [J]. European Journal of Paediatric Neurology, 2008, 12: 183–189.CrossRefGoogle Scholar
  5. [5]
    TREMBLAY F, MALOUIN F, RICHARDS C L, et al. Effects of prolonged muscle stretch on reflex and voluntary muscle activations in children with spastic cerebral palsy [J]. Scandinavian Journal of Rehabilitation Medicine, 1990, 22(4): 171–80.Google Scholar
  6. [6]
    DAMIANO D L, KELLY L E, VAUGHN C L. Effects of quadriceps femoris strengthening on crouch gait in children with spastic diplegia [J]. Physical Therapy, 1995, 75(8): 658–667.CrossRefGoogle Scholar
  7. [7]
    MURARY M P. Gait as a total pattern of movement [J]. American Journal of Physical Medicine, 1967, 46(1): 290–332.Google Scholar
  8. [8]
    DELUCA P A, DAVIS R B, OUNPUU S, et al. Alternations in surgical decision making in pations with cerebral palsy based on three-dimensional gait analysis [J]. Journal of Pediatric Orthopaedics, 1997, 17(5): 608–614.CrossRefGoogle Scholar
  9. [9]
    KAY R M, DENNIS S, RETHLEFSEN S, et al. The effect of preoperative gait analysis on orthopaedic decision making [J]. Clinical Orthopaedics and Related Research, 2000, 372: 217–222.CrossRefGoogle Scholar
  10. [10]
    GRAUBERT C, SONG K M, MCLAUGHLIN J F, et al. Changes in gait at 1 year post-selective dorsal rhizotomy: Results of a prospective randomized study [J]. Journal of Pediatric Orthopaedics, 2000, 20(4): 496–500.Google Scholar
  11. [11]
    ZUMSTEG Z S, AHMED R E, SANTHANAM G, et al. Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13(3): 237–240.CrossRefGoogle Scholar
  12. [12]
    WOLD S, ESBENSEN K, GELADI P. Principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1): 37–52.CrossRefGoogle Scholar
  13. [13]
    WANG W, STEFANO A D, ALLEN R. A simulation model of the surface EMG signal for analysis of muscle activity during the gait cycle [J]. Computers in Biology and Medicine, 2006, 36(6): 601–618.CrossRefGoogle Scholar
  14. [14]
    DUCHˆENE J, HOGREL J Y. A model of EMG generation [J]. IEEE Transactions on Biomedical Engineering, 2000, 47(2): 192–201.CrossRefGoogle Scholar
  15. [15]
    BROWN B H, SMALLWOOD R H, BARBER D C, et al. Medical physics and biomedical engineering [M]. New York, USA: Taylor & Francis Group, 1999.CrossRefGoogle Scholar
  16. [16]
    DIMITROV G V, DIMITROVA N A. Precise and fast calculation of the motor unit potentials detected by a point and rectangular plate electrode [J]. Medical Engineering & Physics, 1998, 20(5): 374–381.CrossRefGoogle Scholar
  17. [17]
    WILSON F N, MACLEOD A G, BARKER P S. The distribution of the action currents produced by heart muscle and other excitable tissues immersed in extensive conducting media [J]. Journal of General Physiology, 1933, 16(3): 423–456.CrossRefGoogle Scholar
  18. [18]
    SHEMMELL J, JOHANSSON J, PORTRA V, et al. Control of interjoint coordination during the swing phase of normal gait at different speeds [J]. Journal of Neuro Engineering and Rehabilitation, 2007, 4(1): 10–10.CrossRefGoogle Scholar
  19. [19]
    ANTONI J, RANDALL R B. A stochastic model for simulation and diagnostics of rolling element bearings with localized faults [J]. Journal of Vibration and Acoustics, 2003, 125: 282–289.CrossRefGoogle Scholar
  20. [20]
    HO D, RANDALL R B. Optimization of bearing diagnostics techniques using simulated and actual bearing fault signals [J]. Mechanical Systems and Signal Processing, 2000, 14(5): 763–788.CrossRefGoogle Scholar
  21. [21]
    ANTONI J, RANDALL R B. Differential diagnosis of gear and bearing faults [J]. Journal of Vibration and Acoustics, 2002, 124: 165–171.CrossRefGoogle Scholar
  22. [22]
    FEHSKE A, GAEDDERT J, REED J H. A new approach to signal classification using spectral correlation and neural networks [C]//IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks. [s.l.]: IEEE, 2005: 144–150.Google Scholar
  23. [23]
    ANTONI J. Cyclostationarity by examples [J]. Mechanical Systems and Signal Processing, 2009, 23: 987–1036.CrossRefGoogle Scholar
  24. [24]
    ANTONI J, XIN G, HAMZAOUI N. Fast computation of the spectral correlation [J]. Mechanical Systems and Signal Processing, 2017, 92: 248–277.CrossRefGoogle Scholar

Copyright information

© Shanghai Jiaotong University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Liang Yu (余亮)
    • 1
    • 2
    Email author
  • Li Yan (严莉)
    • 1
    • 2
  • Mengjie Chen (陈梦婕)
    • 3
  • Liangchao Dong (董良超)
    • 3
  1. 1.Institute of Vibration, Shock and NoiseShanghai Jiao Tong UniversityShanghaiChina
  2. 2.State Key Laboratory of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Department of Pediatric OrthopedicsChildren’s Hospital of Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations