Advertisement

Distributed feedback organic lasing in photonic crystals

  • Yulan Fu
  • Tianrui ZhaiEmail author
Review Article
  • 1 Downloads

Abstract

Considerable research efforts have been devoted to the investigation of distributed feedback (DFB) organic lasing in photonic crystals in recent decades. It is still a big challenge to realize DFB lasing in complex photonic crystals. This review discusses the recent progress on the DFB organic laser based on one-, two-, and three-dimensional photonic crystals. The photophysics of gain materials and the fabrication of laser cavities are also introduced. At last, future development trends of the lasers are prospected.

Keywords

photonic crystals microcavity lasers distributed feedback (DFB) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61822501, 11734001, and 11704017) and the Beijing Natural Science Foundation (No. Z180015).

References

  1. 1.
    Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(20): 2059–2062CrossRefGoogle Scholar
  2. 2.
    John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, 58(23): 2486–2489CrossRefGoogle Scholar
  3. 3.
    Joannopoulos J D, Villeneuve P R, Fan S. Photonic crystals: putting a new twist on light. Nature, 1997, 386(6621): 143–149CrossRefGoogle Scholar
  4. 4.
    Sakoda K. Optical Properties of Photonic Crystals. New York: Springer, 2001CrossRefGoogle Scholar
  5. 5.
    Zhai T, Liu D, Zhang X. Photonic crystals and microlasers fabricated with low refractive index material. Frontiers in Physics, 2010, 5(3): 266–276CrossRefGoogle Scholar
  6. 6.
    Krauss T F, Rue R, Brand S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature, 1996, 383(6602): 699–702CrossRefGoogle Scholar
  7. 7.
    Zoorob M E, Charlton M D, Parker G J, Baumberg J J, Netti M C. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature, 2000, 404(6779): 740–743CrossRefGoogle Scholar
  8. 8.
    Campbell M, Sharp D N, Harrison M T, Denning R G, Turberfield A J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature, 2000, 404(6773): 53–56CrossRefGoogle Scholar
  9. 9.
    Bendickson J M, Dowling J P, Scalora M. Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures. Physical Review E, 1996, 53(4): 4107–4121CrossRefGoogle Scholar
  10. 10.
    Boedecker G, Henkel C. All-frequency effective medium theory of a photonic crystal. Optics Express, 2003, 11(13): 1590–1595CrossRefGoogle Scholar
  11. 11.
    Wang Z, Zhai T, Lin J, Liu D. Effect of surface truncation on mode density in photonic crystals. Journal of the Optical Society of America B, Optical Physics, 2007, 24(9): 2416–2420CrossRefGoogle Scholar
  12. 12.
    Dowling J, Scalora M, Bloemer M, Bowden C. The photonic band edge laser: a new approach to gain enhancement. Journal of Applied Physics, 1994, 75(4): 1896–1899CrossRefGoogle Scholar
  13. 13.
    Cho C O, Jeong J, Lee J, Jeon H, Kim I, Jang D H, Park Y S, Woo J C. Photonic crystal band edge laser array with a holographically generated square-lattice pattern. Applied Physics Letters, 2005, 87(16): 161102CrossRefGoogle Scholar
  14. 14.
    Kim H, Lee M, Jeong H, Hwang M S, Kim H R, Park S, Park Y D, Lee T, Park H G, Jeon H. Electrical modulation of a photonic crystal band-edge laser with a graphene monolayer. Nanoscale, 2018, 10(18): 8496–8502CrossRefGoogle Scholar
  15. 15.
    Hu X, Jiang P, Ding C, Yang H, Gong Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics, 2008, 2(3): 185–189CrossRefGoogle Scholar
  16. 16.
    Bose R, Sridharan D, Kim H, Solomon G S, Waks E. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Physical Review Letters, 2012, 108(22): 227402CrossRefGoogle Scholar
  17. 17.
    Nozaki K, Shinya A, Matsuo S, Sato T, Kuramochi E, Notomi M. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities. Optics Express, 2013, 21(10): 11877–11888CrossRefGoogle Scholar
  18. 18.
    Liu Q, Ouyang Z, Wu C J, Liu C P, Wang J C. All-optical half adder based on cross structures in two-dimensional photonic crystals. Optics Express, 2008, 16(23): 18992–19000CrossRefGoogle Scholar
  19. 19.
    McCutcheon M W, Rieger G W, Young J F, Dalacu D, Poole P J, Williams R L. All-optical conditional logic with a nonlinear photonic crystal nanocavity. Applied Physics Letters, 2009, 95(22): 221102CrossRefGoogle Scholar
  20. 20.
    Fu Y, Hu X, Gong Q. Silicon photonic crystal all-optical logic gates. Physics Letters A, 2013, 377(3–4): 329–333CrossRefGoogle Scholar
  21. 21.
    Rupasov V I V I, Singh M. Quantum gap solitons and many-polariton-atom bound states in dispersive medium and photonic band gap. Physical Review Letters, 1996, 77(2): 338–341CrossRefGoogle Scholar
  22. 22.
    Xie P, Zhang Z Q. Multifrequency gap solitons in nonlinear photonic crystals. Physical Review Letters, 2003, 91(21): 213904CrossRefGoogle Scholar
  23. 23.
    Peleg O, Bartal G, Freedman B, Manela O, Segev M, Christodoulides D N. Conical diffraction and gap solitons in honeycomb photonic lattices. Physical Review Letters, 2007, 98(10): 103901CrossRefGoogle Scholar
  24. 24.
    Wu J, Day D, Gu M. A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal. Applied Physics Letters, 2008, 92(7): 071108CrossRefGoogle Scholar
  25. 25.
    Kang C, Phare C T, Vlasov Y A, Assefa S, Weiss S M. Photonic crystal slab sensor with enhanced surface area. Optics Express, 2010, 18(26): 27930–27937CrossRefGoogle Scholar
  26. 26.
    Sørensen K T, Ingvorsen C B, Nielsen L H, Kristensen A. Effects of water-absorption and thermal drift on a polymeric photonic crystal slab sensor. Optics Express, 2018, 26(5): 5416–5422CrossRefGoogle Scholar
  27. 27.
    Painter O, Lee R K, Scherer A, Yariv A, O’Brien J D, Dapkus P D, Kim I. Two-dimensional photonic band-gap defect mode laser. Science, 1999, 284(5421): 1819–1821CrossRefGoogle Scholar
  28. 28.
    Park H G, Kim S H, Kwon S H, Ju Y G, Yang J K, Baek J H, Kim S B, Lee Y H. Electrically driven single-cell photonic crystal laser. Science, 2004, 305(5689): 1444–1447CrossRefGoogle Scholar
  29. 29.
    Yang X, Wong C W. Coupled-mode theory for stimulated Raman scattering in high-Q/V m silicon photonic band gap defect cavity lasers. Optics Express, 2007, 15(8): 4763–4780CrossRefGoogle Scholar
  30. 30.
    Ryu H Y, Kwon S H, Lee Y J, Lee Y H, Kim F. Very low threshold photonic band edge lasers from free standing trlangular photonic crystal slabs. Applied Physics Letters, 2002, 80(19): 3476–3478CrossRefGoogle Scholar
  31. 31.
    Arango F B, Christiansen M B, Gersborg-Hansen M, Kristensen A. Optofluidic tuning of photonic crystal band edge lasers. Applied Physics Letters, 2007, 91(22): 223503CrossRefGoogle Scholar
  32. 32.
    Jung H, Lee M, Han C, Park Y, Cho K S, Jeon H. Efficient on-chip integration of a colloidal quantum dot photonic crystal band-edge laser with a coplanar waveguide. Optics Express, 2017, 25(26): 32919CrossRefGoogle Scholar
  33. 33.
    Monat C, Seassal C, Letartre X, Regreny P, Rojo-Romeo P, Viktorovitch P, Le Vassor d’Yerville M, Cassagne D, Albert J P, Jalaguier E, Pocas S, Aspar B. InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser. Applied Physics Letters, 2002, 81(27): 5102–5104CrossRefGoogle Scholar
  34. 34.
    Imada M, Noda S, Chutinan A, Tokuda T, Murata M, Sasaki G. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. Applied Physics Letters, 1999, 75(3): 316–318CrossRefGoogle Scholar
  35. 35.
    Kok M, Lu W, Lee J, Tam W, Wong G, Chan C. Lasing from dyedoped photonic crystals with graded layers in dichromate gelatin emulsions. Applied Physics Letters, 2008, 92(15): 151108CrossRefGoogle Scholar
  36. 36.
    Meier M, Mekis A, Dodabalapur A, Timko A, Slusher R E, Joannopoulos J D, Nalamasu O. Laser action from two-dimensional distributed feedback in photonic crystals. Applied Physics Letters, 1999, 74(1): 7–9CrossRefGoogle Scholar
  37. 37.
    Riechel S, Kallinger C, Lemmer U, Feldmann J, Gombert A, Wittwer V, Scherf U. A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure. Applied Physics Letters, 2000, 77(15): 2310–2312CrossRefGoogle Scholar
  38. 38.
    Notomi M, Suzuki H, Tamamura T. Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps. Applied Physics Letters, 2001, 78(10): 1325–1327CrossRefGoogle Scholar
  39. 39.
    Turnbull G, Andrew P, Jory M, Barnes W L, Samuel I. Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser. Physical Review B, 2001, 64(12): 125122CrossRefGoogle Scholar
  40. 40.
    Andrew P, Turnbull G, Samuel I, Barnes W. Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser. Applied Physics Letters, 2002, 81(6): 954–956CrossRefGoogle Scholar
  41. 41.
    Turnbull G, Andrew P, Barnes W L, Samuel I. Photonic mode dispersion of a two-dimensional distributed feedback polymer laser. Physical Review B, 2003, 67(16): 165107CrossRefGoogle Scholar
  42. 42.
    Samuel I D, Turnbull G A. Polymer lasers: recent advances. Materials Today, 2004, 7(9): 28–35CrossRefGoogle Scholar
  43. 43.
    Herrnsdorf J, Guilhabert B, Chen Y, Kanibolotsky A, Mackintosh A, Pethrick R, Skabara P, Gu E, Laurand N, Dawson M. Flexible blue-emitting encapsulated organic semiconductor DFB laser. Optics Express, 2010, 18(25): 25535–25545CrossRefGoogle Scholar
  44. 44.
    Zhai T, Zhang X, Pang Z. Polymer laser based on active waveguide grating structures. Optics Express, 2011, 19(7): 6487–6492CrossRefGoogle Scholar
  45. 45.
    Vecchi G, Raineri F, Sagnes I, Yacomotti A, Monnier P, Karle T J, Lee K H, Braive R, Le Gratiet L, Guilet S, Beaudoin G, Taneau A, Bouchoule S, Levenson A, Raj R. Continuous-wave operation of photonic band-edge laser near 1.55 µm on silicon wafer. Optics Express, 2007, 15(12): 7551–7556CrossRefGoogle Scholar
  46. 46.
    Van der Ziel J P, Tsang W T, Logan R A, Mikulyak R M, Augustyniak W M. Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers. Applied Physics Letters, 1981, 39(7): 525–527CrossRefGoogle Scholar
  47. 47.
    Dahmani B, Hollberg L, Drullinger R. Frequency stabilization of semiconductor lasers by resonant optical feedback. Optics Letters, 1987, 12(11): 876–878CrossRefGoogle Scholar
  48. 48.
    San Miguel M, Feng Q, Moloney J V. Light-polarization dynamics in surface-emitting semiconductor lasers. Physical Review A, 1995, 52(2): 1728–1739CrossRefGoogle Scholar
  49. 49.
    Shank C V. Physics of dye lasers. Reviews of Modern Physics, 1975, 47(3): 649–657CrossRefGoogle Scholar
  50. 50.
    Ledentsov N N, Ustinov V M, Egorov A Y, Zhukov A E, Maksimov M V, Tabatadze I G, Kop’ev P S. Optical properties of heterostructures with InGaAs-GaAs quantum clusters. Semiconductors, 1994, 28(8): 832–834Google Scholar
  51. 51.
    Kirstaedter N, Schmidt O G, Ledentsov N N, Bimberg D, Ustinov V M, Egorov A Y, Zhukov A E, Maximov M V, Kop’ev P S, Alferov Z I. Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers. Applied Physics Letters, 1996, 69(9): 1226–1228CrossRefGoogle Scholar
  52. 52.
    Bimberg D, Grundmann M, Heinrichsdorff F, Ledentsov N N, Ustinov V M, Zhukov A E, Kovsh A R, Maximov M V, Shernyakov Y M, Volovik B V, Tsatsul’nikov A F, Kop’ev P S, Alferov Z I. Quantum dot lasers: breakthrough in optoelectronics. Thin Solid Films, 2000, 367(1–2): 235–249CrossRefGoogle Scholar
  53. 53.
    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G. Perovskite materials for light-emitting diodes and lasers. Advanced Materials, 2016, 28(32): 6804–6834CrossRefGoogle Scholar
  54. 54.
    Wang K, Wang S, Xiao S, Song Q. Recent advances in perovskite micro- and nanolasers. Advanced Optical Materials, 2018, 6(18): 1800278CrossRefGoogle Scholar
  55. 55.
    Wei Q, Li X, Liang C, Zhang Z, Guo J, Hong G, Xing G, Huang W. Recent progress in metal halide perovskite micro- and nanolasers. Advanced Optical Materials, 2019, 7(20): 1900080CrossRefGoogle Scholar
  56. 56.
    Zhang W F, Zhu H, Yu S F, Yang H Y. Observation of lasing emission from carbon nanodots in organic solvents. Advanced Materials, 2012, 24(17): 2263–2267CrossRefGoogle Scholar
  57. 57.
    Qu S, Liu X, Guo X, Chu M, Zhang L, Shen D. Amplified spontaneous green emission and lasing emission from carbon nanoparticles. Advanced Functional Materials, 2014, 24(18): 2689–2695CrossRefGoogle Scholar
  58. 58.
    Tang C W, Vanslyke S A. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913–915CrossRefGoogle Scholar
  59. 59.
    Schön J H, Kloc C, Dodabalapur A, Batlogg B. An organic solid state injection laser. Science, 2000, 289(5479): 599–601CrossRefGoogle Scholar
  60. 60.
    Montes V A, Li G, Pohl R, Shinar J, Anzenbacher P. Effective color tuning in organic light-emitting diodes based on aluminum Tris(5-aryl-8-hydroxyquinoline) complexes. Advanced Materials, 2004, 16(22): 2001–2003CrossRefGoogle Scholar
  61. 61.
    Lawrence J R, Turnbull G A, Samuel I D, Richards G J, Burn P L. Optical amplification in a first-generation dendritic organic semiconductor. Optics Letters, 2004, 29(8): 869–871CrossRefGoogle Scholar
  62. 62.
    Spehr T, Siebert A, Fuhrmann-Lieker T, Salbeck J, Rabe T, Riedl T, Johannes H H, Kowalsky W, Wang J, Weimann T, Hinze P. Organic solid-state ultraviolet-laser based on spiro-terphenyl. Applied Physics Letters, 2005, 87(16): 161103CrossRefGoogle Scholar
  63. 63.
    Xia R, Lai W Y, Levermore P A, Huang W, Bradley D D C. Low-threshold distributed-feedback lasers based on Pyrene-cored starburst molecules with 1,3,6,8-attached Oligo(9,9-Dialkylfluorene) arms. Advanced Functional Materials, 2009, 19(17): 2844–2850CrossRefGoogle Scholar
  64. 64.
    Tessler N, Denton G, Friend R. Lasing from conjugated-polymer microcavities. Nature, 1996, 382(6593): 695–697CrossRefGoogle Scholar
  65. 65.
    Campoy-Quiles M, Heliotis G, Xia R, Ariu M, Pintani M, Etchegoin P, Bradley D D C. Ellipsometric characterization of the optical constants of polyfluorene gain media. Advanced Functional Materials, 2005, 15(6): 925–933CrossRefGoogle Scholar
  66. 66.
    Yap B K, Xia R, Campoy-Quiles M, Stavrinou P N, Bradley D D C. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nature Materials, 2008, 7(5): 376–380CrossRefGoogle Scholar
  67. 67.
    Lawrence J R, Turnbull G A, Samuel I D W. Polymer laser fabricated by a simple micromolding process. Applied Physics Letters, 2003, 82(23): 4023–4025CrossRefGoogle Scholar
  68. 68.
    Goossens M, Ruseckas A, Turnbull G A, Samuel I D W. Subpicosecond pulses from a gain-switched polymer distributed feedback laser. Applied Physics Letters, 2004, 85(1): 31–33CrossRefGoogle Scholar
  69. 69.
    O’Neill M, Kelly S M. Ordered materials for organic electronics and photonics. Advanced Materials, 2011, 23(5): 566–584CrossRefGoogle Scholar
  70. 70.
    Stehr J, Crewett J, Schindler F, Sperling R, von Plessen G, Lemmer U, Lupton J M, Klar T A, Feldmann J, Holleitner A W, Forster M, Scherf U. A low threshold polymer laser based on metallic nanoparticle gratings. Advanced Materials, 2003, 15(20): 1726–1729CrossRefGoogle Scholar
  71. 71.
    Reufer M, Riechel S, Lupton J, Feldmann J, Lemmer U, Schneider D, Benstem T, Dobbertin T, Kowalsky W, Gombert A, Forberich K, Wittwer V, Scherf U. Low-threshold polymeric distributed feedback lasers with metallic contacts. Applied Physics Letters, 2004, 84(17): 3262–3264CrossRefGoogle Scholar
  72. 72.
    Marcus M, Milward J D, Köhler A, Barford W. Structural information for conjugated polymers from optical modeling. Journal of Physical Chemistry A, 2018, 122(14): 3621–3625CrossRefGoogle Scholar
  73. 73.
    Virgili T, Lidzey D G, Grell M, Bradley D D C, Stagira S, Zavelani-Rossi M, De Silvestri S. Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity. Applied Physics Letters, 2002, 80(22): 4088–4090CrossRefGoogle Scholar
  74. 74.
    Yang Y, Turnbull G A, Samuel I D W. Sensitive explosive vapor detection with polyfluorene lasers. Advanced Functional Materials, 2010, 20(13): 2093–2097CrossRefGoogle Scholar
  75. 75.
    Giovanella U, Betti P, Bolognesi A, Destri S, Melucci M, Pasini M, Porzio W, Botta C. Core-type polyfluorene-based copolymers for low-cost light-emitting technologies. Organic Electronics, 2010, 11(12): 2012–2018CrossRefGoogle Scholar
  76. 76.
    Yan M, Rothberg L J, Papadimitrakopoulos F, Galvin M E, Miller T M. Spatially indirect excitons as primary photoexcitations in conjugated polymers. Physical Review Letters, 1994, 72(7): 1104–1107CrossRefGoogle Scholar
  77. 77.
    Heliotis G, Bradley D D C, Turnbull G A, Samuel I D W. Light amplification and gain in polyfluorene waveguides. Applied Physics Letters, 2002, 81(3): 415–417CrossRefGoogle Scholar
  78. 78.
    Chang S J, Liu X, Lu T T, Liu Y Y, Pan J Q, Jiang Y, Chu S Q, Lai W Y, Huang W. Ladder-type poly(indenofluorene-co-benzothia-diazole)s as efficient gain media for organic lasers: design, synthesis, optical gain properties, and stabilized lasing properties. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(26): 6629–6639CrossRefGoogle Scholar
  79. 79.
    Lahoz F, Capuj N, Oton C J, Cheylan S. Optical gain in conjugated polymer hybrid structures based on porous silicon waveguides. Chemical Physics Letters, 2008, 463(4–6): 387–390CrossRefGoogle Scholar
  80. 80.
    Zhai T, Wang Y, Chen L, Wu X, Li S, Zhang X. Red-green-blue laser emission from cascaded polymer membranes. Nanoscale, 2015, 7(47): 19935–19939CrossRefGoogle Scholar
  81. 81.
    Sorokin P P, Lankard J R. Stimulated emission observed from an organic dye, chloro-aluminum phthalocyanine. IBM Journal of Research and Development, 1966, 10(2): 162–163CrossRefGoogle Scholar
  82. 82.
    Czerney P, Graneß G, Birckner E, Vollmer F, Rettig W. Molecular engineering of cyanine-type fluorescent and laser dyes. Journal of Photochemistry and Photobiology A Chemistry, 1995, 89(1): 31–36CrossRefGoogle Scholar
  83. 83.
    Khairutdinov R F, Serpone N. Photophysics of cyanine dyes: subnanosecond relaxation dynamics in monomers, dimers, and H- and J-aggregates in solution. Journal of Physical Chemistry B, 1997, 101(14): 2602–2610CrossRefGoogle Scholar
  84. 84.
    Cerdán L, Costela A, Garcíamoreno I, Bañuelos J, Lópezarbeloa I. Singular laser behavior of hemicyanine dyes: unsurpassed efficiency and finely structured spectrum in the near-IR region. Laser Physics Letters, 2012, 9(6): 426–433CrossRefGoogle Scholar
  85. 85.
    Tomasulo M, Sortino S, White A J P, Raymo F M. Fast and stable photochromic oxazines. Journal of Organic Chemistry, 2005, 70(20): 8180–8189CrossRefGoogle Scholar
  86. 86.
    Shi X, Wang Y, Wang Z, Sun Y, Liu D, Zhang Y, Li Q, Shi J. High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires. Applied Physics Letters, 2013, 103(2): 023504CrossRefGoogle Scholar
  87. 87.
    Zhai T, Wang Y, Liu H, Zhang X. Large-scale fabrication of flexible metallic nanostructure pairs using interference ablation. Optics Express, 2015, 23(2): 1863–1870CrossRefGoogle Scholar
  88. 88.
    Jones G II, Jackson W, Halpern A. Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes. Chemical Physics Letters, 1980, 72(2): 391–395CrossRefGoogle Scholar
  89. 89.
    Liu X, Cole J M, Waddell P G, Lin T C, Radia J, Zeidler A. Molecular origins of optoelectronic properties in coumarin dyes: toward designer solar cell and laser applications. Journal of Physical Chemistry A, 2012, 116(1): 727–737CrossRefGoogle Scholar
  90. 90.
    Wang Y, Shi X, Sun Y, Zheng R, Wei S, Shi J, Wang Z, Liu D. Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires. Optics Letters, 2014, 39(1): 5–8CrossRefGoogle Scholar
  91. 91.
    Wong M M, Schelly Z A. Solvent-jump relaxation kinetics of the association of Rhodamine type laser dyes. Journal of Physical Chemistry, 1974, 78(19): 1891–1895CrossRefGoogle Scholar
  92. 92.
    Zhai T, Zhou Y, Chen S, Wang Z, Shi J, Liu D, Zhang X. Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles. Physical Review A., 2010, 82(2): 023824CrossRefGoogle Scholar
  93. 93.
    Zhai T, Chen J, Chen L, Wang J, Wang L, Liu D, Li S, Liu H, Zhang X. A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate. Nanoscale, 2015, 7(6): 2235–2240CrossRefGoogle Scholar
  94. 94.
    Kan S C, Vassilovski D, Wu T C, Lau K Y. Quantum capture limited modulation bandwidth of quantum well, wire, and dot lasers. Applied Physics Letters, 1993, 62(19): 2307–2309CrossRefGoogle Scholar
  95. 95.
    Kirstaedter N, Ledentsov N N, Grundmann M, Bimberg D, Ustinov V M, Ruvimov S S, Maximov M V, Kop’ev P S, Alferov Z I, Richter U, Werner P, Gösele U, Heydenreich J. Low threshold, large T 0 injection laser emission from (InGa)As quantum dots. Electronics Letters, 1994, 30(17): 1416–1417CrossRefGoogle Scholar
  96. 96.
    Fafard S, Hinzer K, Raymond S, Dion M, McCaffrey J, Feng Y, Charbonneau S. Red-emitting semiconductor quantum dot lasers. Science, 1996, 274(5291): 1350–1353CrossRefGoogle Scholar
  97. 97.
    Yamashita K, Kitanobou A, Ito M, Fukuzawa E, Oe K. Solid-state organic laser using self-written active waveguide with in-line Fabry-Pérot cavity. Applied Physics Letters, 2008, 92(14): 143305CrossRefGoogle Scholar
  98. 98.
    Yamashita K, Yanagi H, Oe K. Array of a dye-doped polymer-based microlaser with multiwavelength emission. Optics Letters, 2011, 36(10): 1875–1877CrossRefGoogle Scholar
  99. 99.
    Lafargue C, Bittner S, Lozenko S, Lautru J, Zyss J, Ulysse C, Cluzel C, Lebental M. Three-dimensional emission from organic Fabry-Perot microlasers. Applied Physics Letters, 2013, 102(25): 251120CrossRefGoogle Scholar
  100. 100.
    Frolov S, Shkunov M, Vardeny Z, Yoshino K. Ring microlasers from conducting polymers. Physical Review B, 1997, 56(8): 4363–4366CrossRefGoogle Scholar
  101. 101.
    Frolov S V, Vardeny Z V, Yoshino K. Plastic microring lasers on fibers and wires. Applied Physics Letters, 1998, 72(15): 1802–1804CrossRefGoogle Scholar
  102. 102.
    Kushida S, Okada D, Sasaki F, Lin Z H, Huang J S, Yamamoto Y. Lasers: low-threshold whispering gallery mode lasing from self-assembled microspheres of single-sort conjugated polymers. Advanced Optical Materials, 2017, 5(10): 1700123CrossRefGoogle Scholar
  103. 103.
    Persano L, Camposeo A, Del Carro P, Mele E, Cingolani R, Pisignano D. Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition. Optics Express, 2006, 14(5): 1951–1956CrossRefGoogle Scholar
  104. 104.
    Singer K D, Kazmierczak T, Lott J, Song H, Wu Y, Andrews J, Baer E, Hiltner A, Weder C. Melt-processed all-polymer distributed Bragg reflector laser. Optics Express, 2008, 16(14): 10358–10363CrossRefGoogle Scholar
  105. 105.
    Tsutsumi N, Ishibashi T. Organic dye lasers with distributed Bragg reflector grating and distributed feedback resonator. Optics Express, 2009, 17(24): 21698–21703CrossRefGoogle Scholar
  106. 106.
    Kretsch K P, Blau W J, Dumarcher V, Rocha L, Fiorini C, Nunzi J M, Pfeiffer S, Tillmann H, Hörhold H H. Distributed feedback laser action from polymeric waveguides doped with oligo phenylene vinylene model compounds. Applied Physics Letters, 2000, 76(16): 2149–2151CrossRefGoogle Scholar
  107. 107.
    Zhai T R, Zhang X P, Dou F. Microscopic excavation into the optically pumped polymer lasers based on distributed feedback. Chinese Physics Letters, 2012, 29(10): 104204CrossRefGoogle Scholar
  108. 108.
    Martins E R, Wang Y, Kanibolotsky A L, Skabara P J, Turnbull G A, Samuel I D. Low-threshold nanoimprinted lasers using substructured gratings for control of distributed feedback. Advanced Optical Materials, 2013, 1(8): 563–566CrossRefGoogle Scholar
  109. 109.
    Zhai T, Wu X, Li S, Liang S, Niu L, Wang M, Feng S, Liu H, Zhang X. Polymer lasing in a periodic-random compound cavity. Polymers, 2018, 10(11): 1194CrossRefGoogle Scholar
  110. 110.
    Zhang S, Tong J, Chen C, Cao F, Liang C, Song Y, Zhai T, Zhang X. Controlling the performance of polymer lasers via the cavity coupling. Polymers, 2019, 11(5): 764CrossRefGoogle Scholar
  111. 111.
    Heliotis G, Xia R, Turnbull G, Andrew P, Barnes W L, Samuel I D W, Bradley D D C. Emission characteristics and performance comparison of polyfluorene lasers with one-and two-dimensional distributed feedback. Advanced Functional Materials, 2004, 14(1): 91–97CrossRefGoogle Scholar
  112. 112.
    Cao H, Zhao Y, Ho S, Seelig E, Wang Q, Chang R. Random laser action in semiconductor powder. Physical Review Letters, 1999, 82(11): 2278–2281CrossRefGoogle Scholar
  113. 113.
    Wiersma D. The physics and applications of random lasers. Nature Physics, 2008, 4(5): 359–367CrossRefGoogle Scholar
  114. 114.
    Zhai T, Wang Y, Chen L, Zhang X. Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate. Nanoscale, 2015, 7(29): 12312–12317CrossRefGoogle Scholar
  115. 115.
    Deotare P B, Mahony T S, Bulović V. Ultracompact low-threshold organic laser. ACS Nano, 2014, 8(11): 11080–11085CrossRefGoogle Scholar
  116. 116.
    Mahler L, Tredicucci A, Beltram F, Walther C, Faist J, Beere H E, Ritchie D A, Wiersma D S. Quasi-periodic distributed feedback laser. Nature Photonics, 2010, 4(3): 165–169CrossRefGoogle Scholar
  117. 117.
    Man W, Megens M, Steinhardt P J, Chaikin P M. Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature, 2005, 436(7053): 993–996CrossRefGoogle Scholar
  118. 118.
    Vardeny Z V, Nahata A, Agrawal A. Optics of photonic quasicrystals. Nature Photonics, 2013, 7(3): 177–187CrossRefGoogle Scholar
  119. 119.
    Zhai T, Cao F, Chu S, Gong Q, Zhang X. Continuously tunable distributed feedback polymer laser. Optics Express, 2018, 26(4): 4491–4497CrossRefGoogle Scholar
  120. 120.
    Barlow G, Shore K. Threshold gain and threshold current analysis of circular grating DFB organic semiconductor lasers. IEE Proceedings-Optoelectronics, 2001, 148(4): 165–170CrossRefGoogle Scholar
  121. 121.
    Bauer C, Giessen H, Schnabel B, Kley E B, Schmitt C, Scherf U, Mahrt R F. A surface-emitting circular grating polymer laser. Advanced Materials, 2001, 13(15): 1161–1164CrossRefGoogle Scholar
  122. 122.
    Stellinga D, Pietrzyk M E, Glackin J M E, Wang Y, Bansal A K, Turnbull G A, Dholakia K, Samuel I D W, Krauss T F. An organic vortex laser. ACS Nano, 2018, 12(3): 2389–2394CrossRefGoogle Scholar
  123. 123.
    Zhou P, Niu L, Hayat A, Cao F, Zhai T, Zhang X. Operating characteristics of high-order distributed feedback polymer lasers. Polymers, 2019, 11(2): 258CrossRefGoogle Scholar
  124. 124.
    Zhai T, Zhang X. Gain- and feedback-channel matching in lasers based on radiative-waveguide gratings. Applied Physics Letters, 2012, 101(14): 143507CrossRefGoogle Scholar
  125. 125.
    Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers. Journal of Applied Physics, 1972, 43(5): 2327–2335CrossRefGoogle Scholar
  126. 126.
    Kazarinov R F, Henry C H. Second-order distributed feedback lasers with mode selection provided by first-order radiation losses. IEEE Journal of Quantum Electronics, 1985, 21(2): 144–150CrossRefGoogle Scholar
  127. 127.
    Scheuer J, Yariv A. Coupled-waves approach to the design and analysis of Bragg and photonic crystal annular resonators. IEEE Journal of Quantum Electronics, 2003, 39(12): 1555–1562CrossRefGoogle Scholar
  128. 128.
    Vannahme C, Smith C L C, Christiansen M B, Kristensen A. Emission wavelength of multilayer distributed feedback dye lasers. Applied Physics Letters, 2012, 101(15): 151123CrossRefGoogle Scholar
  129. 129.
    Huang W, Shen S, Pu D, Wei G, Ye Y, Peng C, Chen L. Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures. Journal of Physics D, 2015, 48(49): 495105CrossRefGoogle Scholar
  130. 130.
    Zhai T, Wu X, Wang M, Tong F, Li S, Ma Y, Deng J, Zhang X. Dual-wavelength polymer laser based on an active/inactive/active sandwich-like structure. Applied Physics Letters, 2016, 109(10): 101906CrossRefGoogle Scholar
  131. 131.
    Van Beijnum F, Van Veldhoven P J, Geluk E J, De Dood M J A, ’t Hooft G W, Van Exter M P. Surface plasmon lasing observed in metal hole arrays. Physical Review Letters, 2013, 110(20): 206802CrossRefGoogle Scholar
  132. 132.
    Kallinger C, Hilmer M, Haugeneder A, Perner M, Spirkl W, Lemmer U, Feldmann J, Scherf U, Müllen K, Gombert A, Wittwer V. A flexible conjugated polymer laser. Advanced Materials, 1998, 10(12): 920–923CrossRefGoogle Scholar
  133. 133.
    Wenger B, Tétreault N, Welland M, Friend R. Mechanically tunable conjugated polymer distributed feedback lasers. Applied Physics Letters, 2010, 97(19): 193303CrossRefGoogle Scholar
  134. 134.
    Zhai T, Chen L, Li S, Hu Y, Wang Y, Wang L, Zhang X. Freestanding membrane polymer laser on the end of an optical fiber. Applied Physics Letters, 2016, 108(4): 041904CrossRefGoogle Scholar
  135. 135.
    Chen C, Tong F, Cao F, Tong J, Zhai T, Zhang X. Tunable polymer lasers based on metal-dielectric hybrid cavity. Optics Express, 2018, 26(24): 32048–32054CrossRefGoogle Scholar
  136. 136.
    Cao F, Niu L, Tong J, Li S, Hayat A, Wang M, Zhai T, Zhang X. Hybrid lasing in a plasmonic cavity. Optics Express, 2018, 26(10): 13383–13389CrossRefGoogle Scholar
  137. 137.
    Zhai T, Tong F, Cao F, Niu L, Li S, Wang M, Zhang X. Distributed feedback lasing in a metallic cavity. Applied Physics Letters, 2017, 111(11): 111901CrossRefGoogle Scholar
  138. 138.
    Andrew P, Turnbull G A, Samuel I D, Barnes W L. Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser. Applied Physics Letters, 2002, 81(6): 954–956CrossRefGoogle Scholar
  139. 139.
    Zhou W, Dridi M, Suh J Y, Kim C H, Co D T, Wasielewski M R, Schatz G C, Odom T W. Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotechnology, 2013, 8(7): 506–511CrossRefGoogle Scholar
  140. 140.
    Foucher C, Guilhabert B, Kanibolotsky A L, Skabara P J, Laurand N, Dawson M D. RGB and white-emitting organic lasers on flexible glass. Optics Express, 2016, 24(3): 2273–2280CrossRefGoogle Scholar
  141. 141.
    Wang Y, Tsiminis G, Kanibolotsky A L, Skabara P J, Samuel I D, Turnbull G A. Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators. Optics Express, 2013, 21(12): 14362–14367CrossRefGoogle Scholar
  142. 142.
    Whitworth G L, Zhang S, Stevenson J R Y, Ebenhoch B, Samuel I D W, Turnbull G A. Solvent immersion nanoimprint lithography of fluorescent conjugated polymers. Applied Physics Letters, 2015, 107(16): 163301CrossRefGoogle Scholar
  143. 143.
    Gaal M, Gadermaier C, Plank H, Moderegger E, Pogantsch A, Leising G, List E J W. Imprinted conjugated polymer laser. Advanced Materials, 2003, 15(14): 1165–1167CrossRefGoogle Scholar
  144. 144.
    Liu X, Klinkhammer S, Wang Z, Wienhold T, Vannahme C, Jakobs P J, Bacher A, Muslija A, Mappes T, Lemmer U. Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer. Optics Express, 2013, 21(23): 27697–27706CrossRefGoogle Scholar
  145. 145.
    Baldo M, Deutsch M, Burrows P, Gossenberger H, Gerstenberg M, Ban V, Forrest S. Organic vapor phase deposition. Advanced Materials, 1998, 10(18): 1505–1514CrossRefGoogle Scholar
  146. 146.
    Klinkhammer S, Liu X, Huska K, Shen Y, Vanderheiden S, Valouch S, Vannahme C, Bräse S, Mappes T, Lemmer U. Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode. Optics Express, 2012, 20(6): 6357–6364CrossRefGoogle Scholar
  147. 147.
    Ge C, Lu M, Jian X, Tan Y, Cunningham B T. Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping. Optics Express, 2010, 18(12): 12980–12991CrossRefGoogle Scholar
  148. 148.
    Liu X, Klinkhammer S, Sudau K, Mechau N, Vannahme C, Kaschke J, Mappes T, Wegener M, Lemmer U. Ink-jet-printed organic semiconductor distributed feedback laser. Applied Physics Express, 2012, 5(7): 072101CrossRefGoogle Scholar
  149. 149.
    Parafiniuk K, Monnereau C, Sznitko L, Mettra B, Zelechowska M, Andraud C, Miniewicz A, Mysliwiec J. Distributed feedback lasing in amorphous polymers with covalently bonded fluorescent dyes: the influence of photoisomerization process. Macromolecules, 2017, 50(16): 6164–6173CrossRefGoogle Scholar
  150. 150.
    Karl M, Glackin J M E, Schubert M, Kronenberg N M, Turnbull G A, Samuel I D W, Gather M C. Flexible and ultra-lightweight polymer membrane lasers. Nature Communications, 2018, 9(1): 1525CrossRefGoogle Scholar
  151. 151.
    Namdas E, Tong M, Ledochowitsch P, Mednick S R, Yuen J D, Moses D, Heeger A J. Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers. Advanced Materials, 2009, 21(7): 799–802CrossRefGoogle Scholar
  152. 152.
    Pisignano D, Persano L, Visconti P, Cingolani R, Gigli G, Barbarella G, Favaretto L. Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography. Applied Physics Letters, 2003, 83(13): 2545–2547CrossRefGoogle Scholar
  153. 153.
    Del Carro P, Camposeo A, Stabile R, Mele E, Persano L, Cingolani R, Pisignano D. Near-infrared imprinted distributed feedback lasers. Applied Physics Letters, 2006, 89(20): 201105CrossRefGoogle Scholar
  154. 154.
    Chang J, Gwinner M, Caironi M, Sakanoue T, Sirringhaus H. Conjugated-polymer-based lateral heterostructures defined by high-resolution photolithography. Advanced Functional Materials, 2010, 20(17): 2825–2832CrossRefGoogle Scholar
  155. 155.
    Berger V, Gauthier-Lafaye O, Costard E. Photonic band gaps and holography. Journal of Applied Physics, 1997, 82(1): 60–64CrossRefGoogle Scholar
  156. 156.
    Yoshioka H, Yang Y, Watanabe H, Oki Y. Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser. Optics Express, 2012, 20(4): 4690–4696CrossRefGoogle Scholar
  157. 157.
    Chen S, Zhou Y, Zhai T, Wang Z, Liu D. Different emission properties of a band edge laser pumped by picosecond and nanosecond pulses. Laser Physics Letters, 2012, 9(8): 570–574CrossRefGoogle Scholar
  158. 158.
    Stroisch M, Woggon T, Lemmer U, Bastian G, Violakis G, Pissadakis S. Organic semiconductor distributed feedback laser fabricated by direct laser interference ablation. Optics Express, 2007, 15(7): 3968–3973CrossRefGoogle Scholar
  159. 159.
    Zhai T, Zhang X, Pang Z, Dou F. Direct writing of polymer lasers using interference ablation. Advanced Materials, 2011, 23(16): 1860–1864CrossRefGoogle Scholar
  160. 160.
    Zhang X, Liu H, Li H, Zhai T. Direct nanopatterning into conjugated polymers using interference crosslinking. Macromolecular Chemistry and Physics, 2012, 213(12): 1285–1290CrossRefGoogle Scholar
  161. 161.
    Zhai T, Lin Y, Liu H, Feng S, Zhang X. Nanoscale tensile stress approach for the direct writing of plasmonic nanostructures. Optics Express, 2013, 21(21): 24490–24496CrossRefGoogle Scholar
  162. 162.
    Scott B, Wirnsberger G, McGehee M, Chmelka B, Stucky G. Dyedoped mesostructured silica as a distributed feedback laser fabricated by soft lithography. Advanced Materials, 2001, 13(16): 1231–1234CrossRefGoogle Scholar
  163. 163.
    Ge C, Lu M, Tan Y, Cunningham B T. Enhancement of pump efficiency of a visible wavelength organic distributed feedback laser by resonant optical pumping. Optics Express, 2011, 19(6): 5086–5092CrossRefGoogle Scholar
  164. 164.
    Lawrence J, Turnbull G, Samuel I. Polymer laser fabricated by a simple micromolding process. Applied Physics Letters, 2003, 82(23): 4023–4025CrossRefGoogle Scholar
  165. 165.
    Salerno M, Gigli G, Zavelani-Rossi M, Perissinotto S, Lanzani G. Effects of morphology and optical contrast in organic distributed feedback lasers. Applied Physics Letters, 2007, 90(11): 111110CrossRefGoogle Scholar
  166. 166.
    Yamashita K, Takeuchi N, Oe K, Yanagi H. Simultaneous RGB lasing from a single-chip polymer device. Optics Letters, 2010, 35(14): 2451–2453CrossRefGoogle Scholar
  167. 167.
    Kuehne A J C, Gather M C. Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chemical Reviews, 2016, 116(21): 12823–12864CrossRefGoogle Scholar
  168. 168.
    Samuel I D, Turnbull G A. Organic semiconductor lasers. Chemical Reviews, 2007, 107(4): 1272–1295CrossRefGoogle Scholar
  169. 169.
    Grivas C, Pollnau M. Organic solid-state integrated amplifiers and lasers. Laser & Photonics Reviews, 2012, 6(4): 419–462CrossRefGoogle Scholar
  170. 170.
    Heliotis G, Xia R, Bradley D D C, Turnbull G A, Samuel I D W, Andrew P, Barnes W L. Blue, surface-emitting, distributed feedback polyfluorene lasers. Applied Physics Letters, 2003, 83(11): 2118–2120CrossRefGoogle Scholar
  171. 171.
    Jung H, Han C, Kim H, Cho K S, Roh Y G, Park Y, Jeon H. Tunable colloidal quantum dot distributed feedback lasers integrated on a continuously chirped surface grating. Nanoscale, 2018, 10(48): 22745–22749CrossRefGoogle Scholar
  172. 172.
    Zhai T, Wu X, Tong F, Li S, Wang M, Zhang X. Multi-wavelength lasing in a beat structure. Applied Physics Letters, 2016, 109(26): 261906CrossRefGoogle Scholar
  173. 173.
    Karnutsch C, Pflumm C, Heliotis G, deMello J C, Bradley D D C, Wang J, Weimann T, Haug V, Gärtner C, Lemmer U. Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Applied Physics Letters, 2007, 90(13): 131104CrossRefGoogle Scholar
  174. 174.
    Karnutsch C, Gýrtner C, Haug V, Lemmer U, Farrell T, Nehls B S, Scherf U, Wang J, Weimann T, Heliotis G, Pflumm C, deMello J C, Bradley D D C. Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback. Applied Physics Letters, 2006, 89(20): 201108CrossRefGoogle Scholar
  175. 175.
    Zhai T, Tong F, Wang Y, Wu X, Li S, Wang M, Zhang X. Polymer lasers assembled by suspending membranes on a distributed feedback grating. Optics Express, 2016, 24(19): 22028–22033CrossRefGoogle Scholar
  176. 176.
    Notomi M, Suzuki H, Tamamura T, Edagawa K. Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice. Physical Review Letters, 2004, 92(12): 123906CrossRefGoogle Scholar
  177. 177.
    Turnbull G, Andrew P, Barnes W, Samuel I. Operating characteristics of a semiconducting polymer laser pumped by a microchip laser. Applied Physics Letters, 2003, 82(3): 313–315CrossRefGoogle Scholar
  178. 178.
    Harwell J R, Whitworth G L, Turnbull G A, Samuel I D W. Green perovskite distributed feedback lasers. Scientific Reports, 2017, 7(1): 11727CrossRefGoogle Scholar
  179. 179.
    Prins F, Kim D K, Cui J, De Leo E, Spiegel L L, McPeak K M, Norris D J. Direct patterning of colloidal quantum-dot thin films for enhanced and spectrally selective out-coupling of emission. Nano Letters, 2017, 17(3): 1319–1325CrossRefGoogle Scholar
  180. 180.
    Cao W, Muñoz A, Palffy-Muhoray P, Taheri B. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nature Materials, 2002, 1(2): 111–113CrossRefGoogle Scholar
  181. 181.
    Yoshino K, Tatsuhara S, Kawagishi Y, Ozaki M, Zakhidov A A, Vardeny Z V. Amplified spontaneous emission and lasing in conducting polymers and fluorescent dyes in opals as photonic crystals. Applied Physics Letters, 1999, 74(18): 2590–2592CrossRefGoogle Scholar
  182. 182.
    Shkunov M, Vardeny Z, DeLong M, Polson R, Zakhidov A, Baughman R. Tunable, gap-state lasing in switchable directions for opal photonic crystals. Advanced Functional Materials, 2002, 12(1): 21–26CrossRefGoogle Scholar
  183. 183.
    Kok M H, Lu W, Tam W Y, Wong G K. Lasing from dye-doped icosahedral quasicrystals in dichromate gelatin emulsions. Optics Express, 2009, 17(9): 7275–7284CrossRefGoogle Scholar
  184. 184.
    Hirayama H, Hamano T, Aoyagi Y. Novel surface emitting laser diode using photonic band-gap crystal cavity. Applied Physics Letters, 1996, 69(6): 791–793CrossRefGoogle Scholar
  185. 185.
    Yang Y, Turnbull G A, Samuel I D W. Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode. Applied Physics Letters, 2008, 92(16): 163306CrossRefGoogle Scholar
  186. 186.
    Riedl T, Rabe T, Johannes H H, Kowalsky W, Wang J, Weimann T, Hinze P, Nehls B, Farrell T, Scherf U. Tunable organic thin-film laser pumped by an inorganic violet diode laser. Applied Physics Letters, 2006, 88(24): 241116CrossRefGoogle Scholar
  187. 187.
    Heydari E, Buller J, Wischerhoff E, Laschewsky A, Döring S, Stumpe J. Label-free biosensor based on an all — polymer DFB laser. Advanced Optical Materials, 2014, 2(2): 137–141CrossRefGoogle Scholar
  188. 188.
    Haughey A M, Guilhabert B, Kanibolotsky A L, Skabara P J, Dawson M D, Burley G A, Laurand N. An oligofluorene truxene based distributed feedback laser for biosensing applications. Biosensors & Bioelectronics, 2014, 54: 679–686CrossRefGoogle Scholar
  189. 189.
    Cao F, Zhang S, Tong J, Chen C, Niu L, Zhai T, Zhang X. Effects of cavity structure on tuning properties of polymer lasers in a liquid environment. Polymers, 2019, 11(2): 329CrossRefGoogle Scholar
  190. 190.
    Schneider D, Rabe T, Riedl T, Dobbertin T, Kröger M, Becker E, Johannes H H, Kowalsky W, Weimann T, Wang J, Hinze P, Gerhard A, Stössel P, Vestweber H. An ultraviolet organic thin-film solid-state laser for biomarker applications. Advanced Materials, 2005, 17(1): 31–34CrossRefGoogle Scholar
  191. 191.
    Retolaza A, Martinez-Perdiguero J, Merino S, Morales-Vidal M, Boj P G, Quintana J A, Villalvilla J M, Díaz-García M A. Organic distributed feedback laser for label-free biosensing of ErbB2 protein biomarker. Sensors and Actuators B, Chemical, 2016, 223: 261–265CrossRefGoogle Scholar
  192. 192.
    Oki Y, Miyamoto S, Maeda M, Vasa N J. Multiwavelength distributed-feedback dye laser array and its application to spectroscopy. Optics Letters, 2002, 27(14): 1220–1222CrossRefGoogle Scholar
  193. 193.
    Voss T, Scheel D, Schade W. A microchip-laser-pumped DFB-polymer-dye laser. Applied Physics B, Lasers and Optics, 2001, 73(2): 105–109CrossRefGoogle Scholar
  194. 194.
    Christiansen M B, Schøler M, Kristensen A. Integration of active and passive polymer optics. Optics Express, 2007, 15(7): 3931–3939CrossRefGoogle Scholar
  195. 195.
    Vannahme C, Klinkhammer S, Lemmer U, Mappes T. Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers. Optics Express, 2011, 19(9): 8179–8186CrossRefGoogle Scholar
  196. 196.
    Toussaere E, Bouadma N, Zyss J. Monolithic integrated four DFB lasers array with a polymer-based combiner for WDM applications. Optical Materials, 1998, 9(1–4): 255–258CrossRefGoogle Scholar
  197. 197.
    Ma H, Jen Y, Dalton L R. Polymer-based optical waveguides: materials, processing, and devices. Advanced Materials, 2002, 14(19): 1339–1365CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Information Photonics Technology, College of Applied SciencesBeijing University of TechnologyBeijingChina

Personalised recommendations