Advertisement

A review of multiple optical vortices generation: methods and applications

  • Long Zhu
  • Jian WangEmail author
Review Article
  • 2 Downloads

Abstract

Optical vortices carrying orbital angular momentum (OAM) have attracted increasing interest in recent years. Optical vortices have seen a variety of emerging applications in optical manipulation, optical trapping, optical tweezers, optical vortex knots, imaging, microscopy, sensing, metrology, quantum information processing, and optical communications. In various optical vortices enabled applications, the generation of multiple optical vortices is of great importance. In this review article, we focus on the methods of multiple optical vortices generation and its applications. We review the methods for generating multiple optical vortices in three cases, i.e., 1-to-N collinear OAM modes, 1-to-N OAM mode array and N-to-N collinear OAM modes. Diverse applications of multiple OAM modes in optical communications and non-communication areas are presented. Future trends, perspectives and opportunities are also discussed.

Keywords

optical communications optical vortices orbital angular momentum (OAM) mode-division multiplexing (MDM) mode multicasting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11574001, 61761130082, 11774116 and 11274131), the National Basic Research Program of China (973 Program) (No. 2014CB340004), the Royal Society-Newton Advanced Fellowship, the National Program for Support of Top-notch Young Professionals, the Yangtze River Excellent Young Scholars Program, the Natural Science Foundation of Hubei Province of China (No. 2018CFA048), and the Program for HUST Academic Frontier Youth Team (No. 2016QYTD05).

References

  1. 1.
    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 1992, 45(11): 8185–8189Google Scholar
  2. 2.
    Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 2011, 3(2): 161–204Google Scholar
  3. 3.
    Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum. Laser & Photonics Reviews, 2008, 2(4): 299–313Google Scholar
  4. 4.
    Dholakia K, Čižmár T. Shaping the future of manipulation. Nature Photonics, 2011, 5(6): 335–342Google Scholar
  5. 5.
    Paterson L, MacDonald M P, Arlt J, Sibbett W, Bryant P E, Dholakia K. Controlled rotation of optically trapped microscopic particles. Science, 2001, 292(5518): 912–914Google Scholar
  6. 6.
    Padgett M, Bowman R. Tweezers with a twist. Nature Photonics, 2011, 5(6): 343–348Google Scholar
  7. 7.
    Dennis M R, King R P, Jack B, O’Holleran K, Padgett M J. Isolated optical vortex knots. Nature Physics, 2010, 6(2): 118–121Google Scholar
  8. 8.
    Bernet S, Jesacher A, Fürhapter S, Maurer C, Ritsch-Marte M. Quantitative imaging of complex samples by spiral phase contrast microscopy. Optics Express, 2006, 14(9): 3792–3805Google Scholar
  9. 9.
    Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412(6844): 313–316Google Scholar
  10. 10.
    Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456Google Scholar
  11. 11.
    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496Google Scholar
  12. 12.
    Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548Google Scholar
  13. 13.
    Willner A E, Wang J, Huang H. A different angle on light communications. Science, 2012, 337(6095): 655–656MathSciNetzbMATHGoogle Scholar
  14. 14.
    Krenn M, Handsteiner J, Fink M, Fickler R, Ursin R, Malik M, Zeilinger A. Twisted light transmission over 143 km. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13648–13653Google Scholar
  15. 15.
    Wang A, Zhu L, Chen S, Du C, Mo Q, Wang J. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber. Optics Express, 2016, 24(11): 11716–11726Google Scholar
  16. 16.
    Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N, Ashrafi S Optical communications using orbital angular momentum beams. Advances in Optics and Photonics, 2015, 7(1): 66–106Google Scholar
  17. 17.
    Wang J. Advances in communications using optical vortices. Photonics Research, 2016, 4(5): B14–B28Google Scholar
  18. 18.
    Wang J. Data information transfer using complex optical fields: a review and perspective. Chinese Optics Letters, 2017, 15(3): 030005–030009Google Scholar
  19. 19.
    Zhu L, Liu J, Mo Q, Du C, Wang J. Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber. Optics Express, 2016, 24(15): 16934–16944Google Scholar
  20. 20.
    Zhu L, Wang A, Chen S, Liu J, Mo Q, Du C, Wang J. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber. Optics Express, 2017, 25(21): 25637–25645Google Scholar
  21. 21.
    Wang A, Zhu L, Wang L, Ai J, Chen S, Wang J. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Optics Express, 2018, 26(8): 10038–10047Google Scholar
  22. 22.
    Wang A, Zhu L, Liu J, Du C, Mo Q, Wang J. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network. Optics Express, 2015, 23(23): 29457–29466Google Scholar
  23. 23.
    Jung Y, Kang Q, Zhou H, Zhang R, Chen S, Wang H, Yang Y, Jin X, Payne F P, Alam S, Richardson D J. Low-loss 25.3 km few-mode ring-core fiber for mode-division multiplexed transmission. Journal of Lightwave Technology, 2017, 35(8): 1363–1368Google Scholar
  24. 24.
    Zhu G, Hu Z, Wu X, Du C, Luo W, Chen Y, Cai X, Liu J, Zhu J, Yu S. Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes. Optics Express, 2018, 26(2): 594–604Google Scholar
  25. 25.
    Zhu L, Zhu G, Wang A, Wang L, Ai J, Chen S, Du C, Liu J, Yu S, Wang J. 18 km low-crosstalk OAM + WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation. Optics Letters, 2018, 43(8): 1890–1893Google Scholar
  26. 26.
    Padgett M, Courtial J, Allen L. Light’s orbital angular momentum. Physics Today, 2004, 57(5): 35–40Google Scholar
  27. 27.
    Su T, Scott R P, Djordjevic S S, Fontaine N K, Geisler D J, Cai X, Yoo S J B. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Optics Express, 2012, 20(9): 9396–9402Google Scholar
  28. 28.
    Wang A, Zhu L, Wang L, Ai J, Chen S, Wang J. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Optics Express, 2018, 26(8): 10038–10047Google Scholar
  29. 29.
    Zhu L, Wang A, Chen S, Liu J, Mo Q, Du C, Wang J. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber. Optics Express, 2017, 25(21): 25637–25645Google Scholar
  30. 30.
    Lavery M P, Speirits F C, Barnett S M, Padgett M J. Detection of a spinning object using light’s orbital angular momentum. Science, 2013, 341(6145): 537–540Google Scholar
  31. 31.
    Lavery M, Barnett S, Speirits F, Padgett M. Observation of the rotational doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body. Optica, 2014, 1 (1): 1–4Google Scholar
  32. 32.
    Belmonte A, Rosales-Guzmán C, Torres J P. Measurement of flow vorticity with helical beams of light. Optica, 2015, 2(11): 1002–1005Google Scholar
  33. 33.
    Fang L, Padgett M J, Wang J. Sharing a common origin between the rotational and linear Doppler effects. Laser & Photonics Reviews, 2017, 11(6): 1700183Google Scholar
  34. 34.
    Yan Y, Yue Y, Huang H, Ren Y, Ahmed N, Tur M, Dolinar S, Willner A. Multicasting in a spatial division multiplexing system based on optical orbital angular momentum. Optics Letters, 2013, 38(19): 3930–3933Google Scholar
  35. 35.
    Lin J, Yuan X C, Tao S H, Burge R E. Collinear superposition of multiple helical beams generated by a single azimuthally modulated phase-only element. Optics Letters, 2005, 30(24): 3266–3268Google Scholar
  36. 36.
    Zhu L, Wang J. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element. Optics Express, 2015, 23(20): 26221–26233Google Scholar
  37. 37.
    Zhu L, Wang J. Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators. Scientific Reports, 2014, 4(1): 7441Google Scholar
  38. 38.
    Moreno I, Davis J A, Cottrell D M, Zhang N, Yuan X C. Encoding generalized phase functions on Dammann gratings. Optics Letters, 2010, 35(10): 1536–1538Google Scholar
  39. 39.
    Zhang N, Yuan X C, Burge R E. Extending the detection range of optical vortices by Dammann vortex gratings. Optics Letters, 2010, 35(20): 3495–3497Google Scholar
  40. 40.
    Du J, Wang J. Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array. Scientific Reports, 2015, 5(1): 9662Google Scholar
  41. 41.
    Lei T, Zhang M, Li Y, Jia P, Liu G N, Xu X, Li Z, Min C, Lin J, Yu C, Niu H, Yuan X C. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light, Science & Applications, 2015, 4(3): e257Google Scholar
  42. 42.
    Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W, Padgett M J. Efficient sorting of orbital angular momentum states of light. Physical Review Letters, 2010, 105(15): 153601Google Scholar
  43. 43.
    Mirhosseini M, Malik M, Shi Z, Boyd R W. Efficient separation of the orbital angular momentum eigenstates of light. Nature Communications, 2013, 4(1): 2781Google Scholar
  44. 44.
    Lavery M P J, Berkhout G C G, Courtial J, Padgett M J. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation. Journal of Optics, 2011, 13(6): 064006Google Scholar
  45. 45.
    Huang H, Milione G, Lavery M P, Xie G, Ren Y, Cao Y, Ahmed N, An Nguyen T, Nolan D A, Li M J, Tur M, Alfano R R, Willner A E. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre. Scientific Reports, 2015, 5: 14931Google Scholar
  46. 46.
    Li S, Wang J, Zhang X, Zhu L, Li C, Yang Q. Demonstration of simultaneous 1-to-34 multicasting of OFDM/OQAM 64-QAM signal from single Gaussian mode to multiple orbital angular momentum (OAM) modes. In: Proceedings of Asia Communications and Photonics Conference 2013 Postdeadline. Optical Society of America, 2013, paper AF2E.5Google Scholar
  47. 47.
    Li S, Wang J. Adaptive power-controllable orbital angular momentum (OAM) multicasting. Scientific Reports, 2015, 5(1): 9677Google Scholar
  48. 48.
    Li S, Wang J. Compensation of a distorted N-fold orbital angular momentum multicasting link using adaptive optics. Optics Letters, 2016,41(7): 1482–1485Google Scholar
  49. 49.
    Zhu L, Wang J. Demonstration of obstruction-free data-carrying N-fold Bessel modes multicasting from a single Gaussian mode. Optics Letters, 2015, 40(23): 5463–5466Google Scholar
  50. 50.
    Durnin J, Miceli J Jr, Eberly J H. Diffraction-free beams. Physical Review Letters, 1987, 58(15): 1499–1501Google Scholar
  51. 51.
    McGloin D, Dholakia K. Bessel beams: diffraction in a new light. Contemporary Physics, 2005, 46(1): 15–28Google Scholar
  52. 52.
    Durnin J, Miceli J J Jr, Eberly J H. Comparison of Bessel and Gaussian beams. Optics Letters, 1988, 13(2): 79Google Scholar
  53. 53.
    Du J, Wang J. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions. Optics Letters, 2015, 40(21): 4827–4830Google Scholar
  54. 54.
    Zhu L, Wang J. Demonstration of obstruction-free data-carrying N-fold Bessel modes multicasting from a single Gaussian mode. Optics Letters, 2015, 40(23): 5463–5466Google Scholar
  55. 55.
    Chen S, Li S, Zhao Y, Liu J, Zhu L, Wang A, Du J, Shen L, Wang J. Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation. Optics Letters, 2016, 41(20): 4680–4683Google Scholar
  56. 56.
    Li S, Wang J. Adaptive free-space optical communications through turbulence using self-healing Bessel beams. Scientific Reports, 2017, 7(1): 43233Google Scholar
  57. 57.
    Zhan Q. Cylindrical vector beams from mathematical concepts to applications. Advances in Optics and Photonics, 2009, 1(1): 1–57Google Scholar
  58. 58.
    Milione G, Lavery M P J, Huang H, Ren Y, Xie G, Nguyen T A, Karimi E, Marrucci L, Nolan D A, Alfano R R, Willner A E. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Optics Letters, 2015, 40 (9): 1980–1983Google Scholar
  59. 59.
    Zhao Y, Wang J. High-base vector beam encoding/decoding for visible-light communications. Optics Letters, 2015, 40(21): 4843–4846Google Scholar
  60. 60.
    Liu J, Li S, Zhu L, Wang A, Chen S, Klitis C, Du C, Mo Q, Sorel M, Yu S, Cai X, Wang J. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light, Science & Applications, 2018, 7(3): 17148Google Scholar
  61. 61.
    Shwartz S, Golub M, Ruschin S. Diffractive optical elements for mode-division multiplexing of temporal signals with the aid of Laguerre-Gaussian modes. Applied Optics, 2013, 52(12): 2659–2669Google Scholar
  62. 62.
    Xie G, Ren Y, Yan Y, Huang H, Ahmed N, Li L, Zhao Z, Bao C, Tur M, Ashrafi S, Willner A E. Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices. Optics Letters, 2016, 41(15): 3447–3450Google Scholar
  63. 63.
    O’Neil A T, Courtial J. Mode transformations in terms of the constituent Hermite-Gaussian or Laguerre-Gaussian modes and the variable-phase mode converter. Optics Communications, 2000, 181 (1–3): 35–45Google Scholar
  64. 64.
    Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366Google Scholar
  65. 65.
    Guan B, Scott R P, Qin C, Fontaine N K, Su T, Ferrari C, Cappuzzo M, Klemens F, Keller B, Earnshaw M, Yoo S J B. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit. Optics Express, 2014, 22(1): 145–156Google Scholar
  66. 66.
    Du J, Wang J. Dielectric metasurfaces enabling twisted light generation/detection/(de)multiplexing for data information transfer. Optics Express, 2018, 26(10): 13183–13194Google Scholar
  67. 67.
    Zhao Z, Wang J, Li S, Willner A E. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Optics Letters, 2013, 38(6): 932–934Google Scholar
  68. 68.
    Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P, Valentine J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Letters, 2014, 14(3): 1394–1399Google Scholar
  69. 69.
    Karimi E, Schulz S A, De Leon I, Qassim V, Upham J, Boyd R W. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light, Science & Applications, 2014, 3(5): e167Google Scholar
  70. 70.
    Wang J. Metasurfaces enabling structured light manipulation: advances and perspectives. Chinese Optics Letters, 2018, 16(5): 050006Google Scholar
  71. 71.
    Li G, Kang M, Chen S, Zhang S, Pun E Y, Cheah K W, Li J. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Letters, 2013, 13(9): 4148–4151Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations