Advertisement

Chemical sensing through photonic crystal fiber: sulfuric acid detection

  • Etu Podder
  • Md. Bellal HossainEmail author
  • Rayhan Habib Jibon
  • Abdullah Al-Mamun Bulbul
  • Himadri Shekhar Mondal
Research Article
  • 6 Downloads

Abstract

A photonic crystal fiber (PCF) for sensing of sulfuric acid is designed and analyzed using Comsol Multiphysics. To analyze the sensor performance, 0%, 10%, 20%, 30%, 40% H2SO4 solution is placed into the fiber separately and then relative sensitivity, confinement loss, birefringence, effective area etc. are investigated for each solution over wavelength ranging from 0.8 to 1.8 µm. The sensor structure affords moderately high relative sensitivity and around 63.4% sensitivity is achieved for the highest concentration of H2SO4 at the wavelength 1.5 µm in x polarization direction. This PCF model also shows zero confinement loss for all solutions of H2SO4 over wavelength ranging from 1 to 1.35 µm and later on approximately 1.422 × 10−17 dB/km confinement loss is found for the highest concentration of H2SO4 at 1.5 µm wavelength. Besides, higher birefringence is attained when the concentration of sulfuric acid is lower and it is achieved 7.5 × 10−4 at 1.5 µm wavelength. Moreover, higher sensing area is achieved at high concentration of sulfuric acid.

Keywords

refractive index confinement loss birefringence relative sensitivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coelho L D, Gaete O, Hanik N. An algorithm for global optimization of optical communication systems. AEÜ-International Journal of Electronics and Communications, 2009, 63(7): 541–550CrossRefGoogle Scholar
  2. 2.
    Furch B, Sodnik Z, Lutz H. Optical communications in space-a challenge for Europe. AEÜ-International Journal of Electronics and Communications, 2002, 56(4): 223–231CrossRefGoogle Scholar
  3. 3.
    Jorgenson R C, Yee S S. A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B, Chemical, 1993, 12(3): 213–220CrossRefGoogle Scholar
  4. 4.
    Xu Z, Chen X, Kim H N, Yoon J. Sensors for the optical detection of cyanide ion. Chemical Society Reviews, 2010, 39(1): 127–137CrossRefGoogle Scholar
  5. 5.
    Kumar P, Kumar V, Roy J S. Design of quad core photonic crystal fibers with flattened zero dispersion. AEÜ-International Journal of Electronics and Communications, 2019, 98: 265–272CrossRefGoogle Scholar
  6. 6.
    Hossain M B, Bulbul A A M, Mukit M A, Podder E. Analysis of optical properties for square, circular and hexagonal photonic crystal fiber. Optics and Photonics Journal, 2017, 7(11): 235–243CrossRefGoogle Scholar
  7. 7.
    Kumar C S, Anbazhagan R. Investigation on chalcogenide and silica based photonic crystal fibers with circular and octagonal core. AEÜ-International Journal of Electronics and Communications, 2017, 72: 40–45CrossRefGoogle Scholar
  8. 8.
    Tameh T A, Isfahani B M, Granpayeh N, Javan A M. Improving the performance of all-optical switching based on nonlinear photonic crystal microring resonators. AEÜ-International Journal of Electronics and Communications, 2011, 65(4): 281–287CrossRefGoogle Scholar
  9. 9.
    Fini J M. Microstructure fibres for optical sensing in gases and liquids. Measurement Science & Technology, 2004, 15(6): 1120–1128CrossRefGoogle Scholar
  10. 10.
    Wang X D, Wolfbeis O S. Fiber-optic chemical sensors and biosensors (2013–2015). Analytical Chemistry, 2016, 88(1): 203–227CrossRefGoogle Scholar
  11. 11.
    Yang X, Lu Y, Liu B, Yao J. Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics, 2017, 12(2): 489–496CrossRefGoogle Scholar
  12. 12.
    Otupiri R, Akowuah E K, Haxha S, Ademgil H, AbdelMalek F, Aggoun A. A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics Journal, 2014, 6(4): 1–11CrossRefGoogle Scholar
  13. 13.
    Luke S, Sudheer S K, Pillai V M. Modeling and analysis of a highly birefringent chalcogenide photonic crystal fiber. Optik (Stuttgart), 2015, 126(23): 3529–3532CrossRefGoogle Scholar
  14. 14.
    Saitoh K, Koshiba M. Single-polarization single-mode photonic crystal fibers. IEEE Photonics Technology Letters, 2003, 15(10): 1384–1386CrossRefGoogle Scholar
  15. 15.
    Yamanari M. Fiber-based polarization-sensitive Fourier domain optical coherence tomography. Dissertation for the Doctoral Degree. Tsukuba: University of TsukubaGoogle Scholar
  16. 16.
    Mortensen N A. Effective area of photonic crystal fibers. Optics Express, 2002, 10(7): 341–348CrossRefGoogle Scholar
  17. 17.
    Ademgil H. Highly sensitive octagonal photonic crystal fiber based sensor. Optik (Stuttgart), 2014, 125(20): 6274–6278CrossRefGoogle Scholar
  18. 18.
    Ademgil H, Haxha S. PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications. Sensors (Basel), 2015, 15(12): 31833–31842CrossRefGoogle Scholar
  19. 19.
    Ademgil H, Haxha S. Highly birefringent nonlinear PCF for optical sensing of analytes in aqueous solutions. Optik (Stuttgart), 2016, 127(16): 6653–6660CrossRefGoogle Scholar
  20. 20.
    Asaduzzaman S, Ahmed K, Bhuiyan T, Farah T. Hybrid photonic crystal fiber in chemical sensing. SpringerPlus, 2016, 5(1): 748CrossRefGoogle Scholar
  21. 21.
    Ademgil H, Haxha S. PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications. Sensors (Basel), 2015, 15(12): 31833–31842CrossRefGoogle Scholar
  22. 22.
    Shi C, Zang X F, Chen L, Peng Y, Cai B, Nash G R, Zhu Y M. Compact broadband terahertz perfect absorber based on multi-interference and diffraction effects. IEEE Transactions on Terahertz Science and Technology, 2016, 6(1): 40–44CrossRefGoogle Scholar
  23. 23.
    Huang Y, Xu Y, Yariv A. Fabrication of functional microstructured optical fibers through a selective-filling technique. Applied Physics Letters, 2004, 85(22): 5182–5184CrossRefGoogle Scholar
  24. 24.
    Fabrication of Photonic Crystal Fibers, Photonic Crystal Fibers Science, accessed on 25th February, 2019. Available: http://www.mpl.mpg.de/en/russell/research/tdsu-3-fiber-drawing.html
  25. 25.
    Arif M F H, Asaduzzaman S, Ahmed K, Morshed M. High sensitive PCF based chemical sensor for ethanol detection. In: Proceedings of 5th International Conference on Informatics, Electronics and Vision (ICIEV). IEEE, 2016, 6–9Google Scholar
  26. 26.
    Krieger U K, Mössinger J C, Luo B, Weers U, Peter T. Measurement of the refractive indices of H2SO4-HNO3-H2O solutions to stratospheric temperatures. Applied Optics, 2000, 39(21): 3691–3703CrossRefGoogle Scholar
  27. 27.
    Hale G M, Querry M R. Optical constants of water in the 200-nm to 200-µm wavelength region. Applied Optics, 1973, 12(3): 555–563CrossRefGoogle Scholar
  28. 28.
    Yang T, Wang E, Jiang H, Hu Z, Xie K. High birefringence photonic crystal fiber with high nonlinearity and low confinement loss. Optics Express, 2015, 23(7): 8329–8337CrossRefGoogle Scholar
  29. 29.
    Yang T, Ding C, Ziolkowski R W, Guo Y J. Circular hole ENZ photonic crystal fibers exhibit high birefringence. Optics Express, 2018, 26(13): 17264–17278CrossRefGoogle Scholar
  30. 30.
    Hossain M M, Hossain M B, Amin M Z. Small coupling length with a low confinement loss dual-core liquid infiltrated photonic crystal fiber coupler. OSA Continuum, 2018, 1(3): 953–962CrossRefGoogle Scholar
  31. 31.
    Hossain M B, Podder E, Adhikary A. Optimized hexagonal photonic crystal fibre sensor for glucose sensing. Advances in Research, 2018, 13(3): 1–7CrossRefGoogle Scholar
  32. 32.
    Podder E, Jibon R H, Hossain M B, Bulbul A A M, Biswas S, Kabir M A. Alcohol sensing through photonic crystal fiber at different temperature. Optics and Photonics Journal, 2018, 8(10): 309–316CrossRefGoogle Scholar
  33. 33.
    Matsui T, Zhou J, Nakajima K, Sankawa I. Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss. Journal of Lightwave Technology, 2005, 23(12): 4178–4183CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Etu Podder
    • 1
  • Md. Bellal Hossain
    • 1
    Email author
  • Rayhan Habib Jibon
    • 1
  • Abdullah Al-Mamun Bulbul
    • 1
    • 2
  • Himadri Shekhar Mondal
    • 1
  1. 1.Electronics and Communication Engineering DisciplineKhulna UniversityKhulnaBangladesh
  2. 2.Department of Electronics and Telecommunication Engineering (ETE)Bangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh

Personalised recommendations