Nano-film aluminum-gold for ultra-high dynamic-range surface plasmon resonance chemical sensor

  • Briliant Adhi PrabowoEmail author
  • I Dewa Putu Hermida
  • Robeth Viktoria Manurung
  • Agnes Purwidyantri
  • Kou-Chen LiuEmail author
Research Article


An analytical and experimental study of nanofilm aluminum (Al) for ultra-high dynamic range surface plasmon resonance (SPR) biosensor is presented in this article. A thin film of 16 nm Al is proposed for metallic sensing layer for SPR sensor. For the protective layer, a 10 nm of gold (Au) layer was configured on top of Al as a protection layer. This ultra-high dynamic range of SPR biosensor reached the bulk refractive index sample limit up to 1.45 RIU. For the analytical study, with the assumption of anisotropic refractive indices experiment, the dynamic range showed a refractive index value of around 1.58 RIU. The refractive index value limit achieved by the proposed sensing design is potentially implemented in various applications, such as in chemical detection and environmental monitoring study with high refractive index solution sample. The experimental results are presented as a proof-of-concept of the proposed idea.


dynamic range surface plasmon resonance (SPR) sensor aluminum (Al) gold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Supplementary material, approximately 17.2 MB.


  1. 1.
    Hoa X D, Kirk A G, Tabrizian M. Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosensors & Bioelectronics, 2007, 23(2): 151–160CrossRefGoogle Scholar
  2. 2.
    Linman M J, Abbas A, Cheng Q. Interface design and multiplexed analysis with surface plasmon resonance (SPR) spectroscopy and SPR imaging. Analyst (London), 2010, 135(11): 2759–2767CrossRefGoogle Scholar
  3. 3.
    Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews, 2008, 108(2): 462–493CrossRefGoogle Scholar
  4. 4.
    Šípová H, Špringer T, Homola J. Streptavidin-enhanced assay for sensitive and specific detection of single nucleotide polymorphism in TP53. Analytical and Bioanalytical Chemistry, 2011, 399(7): 2343–2350CrossRefGoogle Scholar
  5. 5.
    Prabowo B A, Chang Y F F, Lai H C C, Alom A, Pal P, Lee Y Y Y, Chiu N F F, Hatanaka K, Su L C C, Liu K C C. Rapid screening of mycobacterium tuberculosis complex (MTBC) in clinical samples by a modular portable biosensor. Sensors and Actuators B, Chemical, 2018, 254: 742–748CrossRefGoogle Scholar
  6. 6.
    Prabowo B A, Wang R Y L, Secario M K, Ou P T, Alom A, Liu J J, Liu K C. Rapid detection and quantification of enterovirus 71 by a portable surface plasmon resonance biosensor. Biosensors & Bioelectronics, 2017, 92: 186–191CrossRefGoogle Scholar
  7. 7.
    Zhao J, Cao S, Liao C, Wang Y, Wang G, Xu X, Fu C, Xu G, Lian J, Wang Y. Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber. Sensors and Actuators B, Chemical, 2016, 230: 206–211CrossRefGoogle Scholar
  8. 8.
    Gwon H R, Lee S H. Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration. Materials Transactions, 2010, 51(6): 1150–1155CrossRefGoogle Scholar
  9. 9.
    Nguyen H H, Park J, Kang S, Kim M. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Basel, Switzerland), 2015, 15(5): 10481–10510CrossRefGoogle Scholar
  10. 10.
    Guo X. Surface plasmon resonance based biosensor technique: a review. Journal of Biophotonics, 2012, 5(7): 483–501CrossRefGoogle Scholar
  11. 11.
    Chung J W, Bernhardt R, Pyun J C. Additive assay of cancer marker CA 19-9 by SPR biosensor. Sensors and Actuators B, Chemical, 2006, 118(1-2): 28–32CrossRefGoogle Scholar
  12. 12.
    Averseng O, Hagège A, Taran F, Vidaud C. Surface plasmon resonance for rapid screening of uranyl affine proteins. Analytical Chemistry, 2010, 82(23): 9797–9802CrossRefGoogle Scholar
  13. 13.
    Piliarik M, Párová L, Homola J. High-throughput SPR sensor for food safety. Biosensors & Bioelectronics, 2009, 24(5): 1399–1404CrossRefGoogle Scholar
  14. 14.
    Zhang H, Yang L, Zhou B, Liu W, Ge J, Wu J, Wang Y, Wang P. Ultrasensitive and selective gold film-based detection of mercury (II) in tap water using a laser scanning confocal imaging-surface plasmon resonance system in real time. Biosensors & Bioelectronics, 2013, 47: 391–395CrossRefGoogle Scholar
  15. 15.
    Prabowo B A, Alom A, Secario M K, Masim F C P, Lai H C, Hatanaka K, Liu K C. Graphene-based portable SPR sensor for the detection of mycobacterium tuberculosis DNA strain. Procedia Engineering, 2016, 168: 541–545CrossRefGoogle Scholar
  16. 16.
    He Y J. Novel and high-performance LSPR biochemical fiber sensor. Sensors and Actuators B, Chemical, 2015, 206: 212–219CrossRefGoogle Scholar
  17. 17.
    Mock J J, Hill R T, Tsai Y J, Chilkoti A, Smith D R. Probing dynamically tunable localized surface plasmon resonances of filmcoupled nanoparticles by evanescent wave excitation. Nano Letters, 2012, 12(4): 1757–1764CrossRefGoogle Scholar
  18. 18.
    Zhang J, Sun Y, Wu Q, Gao Y, Zhang H, Bai Y, Song D. Preparation of graphene oxide-based surface plasmon resonance biosensor with Au bipyramid nanoparticles as sensitivity enhancer. Colloids and Surfaces. B, Biointerfaces, 2014, 116: 211–218CrossRefGoogle Scholar
  19. 19.
    Wu L, Chu H S, Koh W S, Li E P. Highly sensitive graphene biosensors based on surface plasmon resonance. Optics Express, 2010, 18(14): 14395–14400CrossRefGoogle Scholar
  20. 20.
    Maurya J B, Prajapati Y K, Singh V, Saini J P. Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2-SiO2 composite layer. Applied Physics A, Materials Science & Processing, 2015, 121(2): 525–533CrossRefGoogle Scholar
  21. 21.
    Zeng S, Hu S, Xia J, Anderson T, Dinh X Q, Meng X M, Coquet P, Yong K T. Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sensors and Actuators B, Chemical, 2015, 207: 801–810CrossRefGoogle Scholar
  22. 22.
    Piliarik M, Vala M, Tichý I, Homola J. Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons. Biosensors & Bioelectronics, 2009, 24(12): 3430–3435CrossRefGoogle Scholar
  23. 23.
    Prabowo B A, Alom A, Pal P, Secario M K, Wang R Y L, Liu K C. Novel four layer metal sensing in portable SPR sensor platform for viral particles quantification. Proceedings of Eurosensors, 2017, 1 (4): 528CrossRefGoogle Scholar
  24. 24.
    Prabowo B A, Liu K C. Multi-metallic sensing layers for surface plasmon resonance sensor. In: Proceedings of IEEE SCOReD. Putrajaya: IEEE, 2017Google Scholar
  25. 25.
    Choi Y H, Lee G Y, Ko H, Chang Y W, Kang M J, Pyun J C. Development of SPR biosensor for the detection of human hepatitis B virus using plasma-treated parylene-N film. Biosensors & Bioelectronics, 2014, 56: 286–294CrossRefGoogle Scholar
  26. 26.
    Szunerits S, Maalouli N, Wijaya E, Vilcot J P, Boukherroub R. Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Analytical and Bioanalytical Chemistry, 2013, 405(5): 1435–1443CrossRefGoogle Scholar
  27. 27.
    Vaisocherová H, Ševcù V, Adam P, Špaèková B, Hegnerová K, de los Santos Pereira A, Rodriguez-Emmenegger C, Riedel T, Houska M, Brynda E, Homola J. Functionalized ultra-low fouling carboxyand hydroxy-functional surface platforms: functionalization capacity, biorecognition capability and resistance to fouling from undiluted biological media. Biosensors & Bioelectronics, 2014, 51: 150–157CrossRefGoogle Scholar
  28. 28.
    Sabouri A, Yetisen A K, Sadigzade R, Hassanin H, Essa K, Butt H. Three-dimensional microstructured lattices for oil sensing. Energy & Fuels, 2017, 31(3): 2524–2529CrossRefGoogle Scholar
  29. 29.
    Ramesh A K, Ramesh P. Trade-off between sensitivity and dynamic range in designing MEMS capacitive pressure sensor. In: Proceedings of IEEE TENCON. Macao: IEEE, 2016, 1–3Google Scholar
  30. 30.
    Dak P, Alam M A. Numerical and analytical modeling to determine performance tradeoffs in hydrogel-based pH sensors. IEEE Transactions on Electron Devices, 2016, 63(6): 2524–2530CrossRefGoogle Scholar
  31. 31.
    Chen P, Shu X, Cao H, Sugden K. High-sensitivity and largedynamic-range refractive index sensors employing weak composite Fabry-Perot cavities. Optics Letters, 2017, 42(16): 3145–3148CrossRefGoogle Scholar
  32. 32.
    Prabowo B A, Purwidyantri A, Liu K C. Surface plasmon resonance optical sensor: a review on light source technology. Biosensors (Basel), 2018, 8(3): 80CrossRefGoogle Scholar
  33. 33.
    Mishra A K, Mishra S K, Verma R K. An SPR-based sensor with an extremely large dynamic range of refractive index measurements in the visible region. Journal of Physics D, Applied Physics, 2015, 48 (43): 435502CrossRefGoogle Scholar
  34. 34.
    Ong B H, Yuan X, Tan Y Y, Irawan R, Fang X, Zhang L, Tjin S C. Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide. Lab on a Chip, 2007, 7(4): 506–512CrossRefGoogle Scholar
  35. 35.
    Vandezande W, Janssen K P F, Delport F, Ameloot R, De Vos D E, Lammertyn J, Roeffaers M B J. Parts per million detection of alcohol vapors via metal organic framework functionalized surface plasmon resonance sensors. Analytical Chemistry, 2017, 89(8): 4480–4487CrossRefGoogle Scholar
  36. 36.
    Greulich C, Braun D, Peetsch A, Diendorf J, Siebers B, Epple M, Köller M. The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Advances, 2012, 2(17): 6981–6987CrossRefGoogle Scholar
  37. 37.
    Prabowo B A, Chang Y F, Lee Y Y, Su L C, Yu C J, Lin Y H, Chou C, Chiu N F, Lai H C, Liu K C. Application of an OLED integrated with BEF and giant birefringent optical (GBO) film in a SPR biosensor. Sensors and Actuators. B, Chemical, 2014, 198: 424–430CrossRefGoogle Scholar
  38. 38.
    Abdelmalek F. Surface plasmon resonance based on Bragg gratings to test the durability of Au-Al films. Materials Letters, 2002, 57(1): 213–218CrossRefGoogle Scholar
  39. 39.
    Jha R, Sharma A K. High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared. Optics Letters, 2009, 34(6): 749–751CrossRefGoogle Scholar
  40. 40.
    Su L C, Chang C M, Tseng Y L, Chang Y F Y S, Li Y C, Chang Y S, Chou C. Rapid and highly sensitive method for influenza A (H1N1) virus detection. Analytical Chemistry, 2012, 84(9): 3914–3920CrossRefGoogle Scholar
  41. 41.
    McPeak K M, Jayanti S V, Kress S J P, Meyer S, Iotti S, Rossinelli A, Norris D J. Plasmonic films can easily be better: rules and recipes. ACS Photonics, 2015, 2(3): 326–333CrossRefGoogle Scholar
  42. 42.
    Hale G M, Querry M R. Optical constants of water in the 200-nm to 200-μm wavelength region. Applied Optics, 1973, 12(3): 555–563CrossRefGoogle Scholar
  43. 43.
    Tan Y H, Liu M, Nolting B, Go J G, Gervay-Hague J, Liu G Y. A nanoengineering approach for investigation and regulation of protein immobilization. ACS Nano, 2008, 2(11): 2374–2384CrossRefGoogle Scholar
  44. 44.
    Homola J J, Yee S S, Gauglitz G G. Surface plasmon resonance sensors. Sensors and Actuators B, Chemical, 1999, 54(1-2): 3–15CrossRefGoogle Scholar
  45. 45.
    Li H Y, Zhou S M, Li J, Chen Y L, Wang S Y, Shen Z C, Chen L Y, Liu H, Zhang X X. Analysis of the drude model in metallic films. Applied Optics, 2001, 40(34): 6307–6311CrossRefGoogle Scholar
  46. 46.
    Homola J. Surface Plasmon Resonance Based Sensors. Berlin: Springer, 2006CrossRefGoogle Scholar
  47. 47.
    Kooyman R P H, Schasfoort R B M, Tudos A J. Physics of Surface Plasmon Resonance. In: Schasfoort R B M, Tudos A J, eds. Handbook of Surface Plasmon Resonance. Cambridge: The Royal Society of Chemistry, 2008, 403Google Scholar
  48. 48.
    Sun X, Li H. Gold nanoisland arrays by repeated deposition and post-deposition annealing for surface-enhanced Raman spectroscopy. Nanotechnology, 2013, 24(35): 355706CrossRefGoogle Scholar
  49. 49.
    Kang M, Park S G, Jeong K H. Repeated solid-state dewetting of thin gold films for nanogap-rich plasmonic nanoislands. Scientific Reports, 2015, 5: 14790CrossRefGoogle Scholar
  50. 50.
    Purwidyantri A, El-Mekki I, Lai C S. Tunable plasmonic SERS hotspots on Au-film over nanosphere by rapid thermal annealing. IEEE Transactions on Nanotechnology, 2017, 16(4): 551–559CrossRefGoogle Scholar
  51. 51.
    Purwidyantri A, Kamajaya L, Chen C H, Luo J D, Chiou C C, Tian Y C, Lin C Y, Yang C M, Lai C S. A colloidal nanopatterning and downscaling of a highly periodic Au nanoporous EGFET biosensor. Journal of the Electrochemical Society, 2018, 165(4): H3170–H3177CrossRefGoogle Scholar
  52. 52.
    Ullah I, Lv H, Whang A J W, Su Y. Analysis of a novel design of uniformly illumination for Fresnel lens-based optical fiber daylighting system. Energy and Building, 2017, 154: 19–29CrossRefGoogle Scholar
  53. 53.
    Roberts C J, Williams P M, Davies J, Dawkes C, Sefton J, Edwards J C, Haymes G, Bestwick C, Davies M C, Tendler S J B. Real-space differentiation of IgG and IgM antibodies deposited on microtiter wells by scanning force microscopy. Langmuir, 1995, 11(5): 1822–1826CrossRefGoogle Scholar
  54. 54.
    Kanso M, Cuenot S, Louarn G. Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments. Plasmonics, 2008, 3(2-3): 49–57CrossRefGoogle Scholar
  55. 55.
    Slavík R, Homola J. Optical multilayers for LED-based surface plasmon resonance sensors. Applied Optics, 2006, 45(16): 3752–3759CrossRefGoogle Scholar
  56. 56.
    Wei Y, Su Y, Liu C, Nie X, Liu Z, Zhang Y, Zhang Y. Two-channel SPR sensor combined application of polymer- and vitreous-clad optic fibers. Sensors (Basel, Switzerland), 2017, 17(12): 2862CrossRefGoogle Scholar
  57. 57.
    Wei Y, Liu C, Zhang Y, Luo Y, Nie X, Liu Z, Zhang Y, Peng F, Zhou Z. Multi-channel SPR sensor based on the cascade application of the single-mode and multimode optical fiber. Optics Communications, 2017, 390: 82–87CrossRefGoogle Scholar
  58. 58.
    Liu Z, Wei Y, Zhang Y, Zhu Z, Zhao E, Zhang Y, Yang J, Liu C, Yuan L. Reflective-distributed SPR sensor based on twin-core fiber. Optics Communications, 2016, 366: 107–111CrossRefGoogle Scholar
  59. 59.
    Liu Z, Wei Y, Zhang Y, Liu C, Zhang Y, Zhao E, Yang J, Yuan L. Compact distributed fiber SPR sensor based on TDM and WDM technology. Optics Express, 2015, 23(18): 24004–24012CrossRefGoogle Scholar
  60. 60.
    Zeng Y, Wang L, Wu S Y, He J, Qu J, Li X, Ho H P, Gu D, Gao B Z, Shao Y. Wavelength-scanning SPR imaging sensors based on an acousto-optic tunable filter and a white light laser. Sensors (Basel, Switzerland), 2017, 17(1): 90CrossRefGoogle Scholar
  61. 61.
    Chen H, Chen C, Chang Y, Chuang H. Compact surface plasmon resonance biosensor utilizing an injection-molded prism. In: Proceedings of Advanced Environmental, Chemical, and Biological Sensing Technologies XIII. Baltimore: SPIE, 2018, 986205Google Scholar
  62. 62.
    Lan G, Liu S, Zhang X, Wang Y, Song Y. Highly sensitive and wide-dynamic-range liquid-prism surface plasmon resonance refractive index sensor based on the phase and angular interrogations. Chinese Optics Letters, 2016, 14(2): 022401–022405CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Briliant Adhi Prabowo
    • 1
    • 2
    • 3
    Email author
  • I Dewa Putu Hermida
    • 1
  • Robeth Viktoria Manurung
    • 1
  • Agnes Purwidyantri
    • 3
    • 4
  • Kou-Chen Liu
    • 2
    • 3
    • 5
    • 6
    Email author
  1. 1.Research Center for Electronics and TelecommunicationsIndonesian Institute of SciencesBandungIndonesia
  2. 2.Department of Electronics EngineeringChang Gung UniversityTaoyuanTaiwan
  3. 3.Biosensor GroupChang Gung UniversityTaoyuanTaiwan
  4. 4.Research Unit for Clean TechnologyIndonesian Institute of SciencesBandungIndonesia
  5. 5.Division of Pediatric Infectious Disease, Department of PediatricsChang Gung Memorial HospitalTaoyuanTaiwan
  6. 6.Department of Materials EngineeringMing Chi University of TechnologyNew Taipei CityTaiwan

Personalised recommendations