Advertisement

Frontiers of Optoelectronics

, Volume 11, Issue 4, pp 413–418 | Cite as

A direct method to calculate second-order two-dimensional terahertz spectroscopy in frequency-domain based on classical theory

  • Feidi Xiang
  • Kejia WangEmail author
  • Zhengang Yang
  • Jinsong Liu
  • Shenglie Wang
Research Article
  • 6 Downloads

Abstract

Previous theoretical researches on the two-dimensional terahertz spectroscopy (2DTS), which are conducted via inefficiently time-consuming numerical simulation, deal with only single-mode system. To overcome the limitations, we derive a classical-theory-based analytical solution which is applicable to multi-modes system. Three typical weak sources of nonlinearities are introduced. The findings suggest that the analytical results correspond well with those obtained by the traditional numerical simulation. Thus the study provides a more efficient and practical method to directly calculate 2DTS, and, in a broader sense, sheds new light on the theory of 2DTS.

Keywords

two-dimensional spectroscopy terahertz classical method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We acknowledge the support from the National Natural Science Foundation of China (Grant Nos. 11574105, 61475054, 61405063 and 61177095), and the Fundamental Research Funds for the Central Universities (No. 2017KFYXJJ029).

References

  1. 1.
    Hattori T. Classical theory of two-dimensional time-domain terahertz spectroscopy. Journal of Chemical Physics, 2010, 133 (20): 204503CrossRefGoogle Scholar
  2. 2.
    Cervetto V, Helbing J, Bredenbeck J, Hamm P. Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: an experimental and theoretical comparison. Journal of Chemical Physics, 2004, 121(12): 5935–5942CrossRefGoogle Scholar
  3. 3.
    Okumura K, Tanimura Y. Two-dimensional THz spectroscopy of liquids: non-linear vibrational response to a series of THz laser pulses. Chemical Physics Letters, 1998, 295(4): 298–304CrossRefGoogle Scholar
  4. 4.
    Woerner M, Kuehn W, Bowlan P, Reimann K, Elsaesser T. Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids. New Journal of Physics, 2013, 15(2): 025039CrossRefGoogle Scholar
  5. 5.
    Zanni M T, Gnanakaran S, Stenger J, Hochstrasser R M. Heterodyned two-dimensional infrared spectroscopy of solventdependent conformations of acetylproline-NH2. Journal of Physical Chemistry B, 2001, 105(28): 6520–6535CrossRefGoogle Scholar
  6. 6.
    Woutersen S, Hamm P. Nonlinear two-dimensional vibrational spectroscopy of peptides. Journal of Physics Condensed Matter, 2002, 14(39): R1035–R1062CrossRefGoogle Scholar
  7. 7.
    Woutersen S, Hamm P. Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy. Journal of Physical Chemistry B, 2000, 104(47): 11316–11320CrossRefGoogle Scholar
  8. 8.
    Hamm P, Lim M, DeGrado W F, Hochstrasser R M. The twodimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional structure. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(5): 2036–2041CrossRefGoogle Scholar
  9. 9.
    Bredenbeck J, Helbing J, Behrendt R, Renner C, Moroder L, Wachtveitl J, Hamm P. Transient 2D-IR spectroscopy: snapshots of the nonequilibrium ensemble during the picosecond conformational transition of a small peptide. Journal of Physical Chemistry B, 2003, 107(33): 8654–8660CrossRefGoogle Scholar
  10. 10.
    Jewariya M, Nagai M, Tanaka K. Enhancement of terahertz wave generation by cascaded c(2) processes in LiNbO3. Journal of the Optical Society of America. B, Optical Physics, 2009, 26(9): A101–A106Google Scholar
  11. 11.
    Hebling J, Almási G, Kozma I, Kuhl J. Velocity matching by pulse front tilting for large area THz-pulse generation. Optics Express, 2002, 10(21): 1161–1166CrossRefGoogle Scholar
  12. 12.
    Yeh K L, Hoffmann M C, Hebling J, Nelson K A. Generation of 10 mJ ultrashort terahertz pulses by optical rectification. Applied Physics Letters, 2007, 90(17): 171121CrossRefGoogle Scholar
  13. 13.
    Elsaesser T, Reimann K, Woerner M. Focus: phase-resolved nonlinear terahertz spectroscopy–from charge dynamics in solids to molecular excitations in liquids. Journal of Chemical Physics, 2015, 142(21): 212301CrossRefGoogle Scholar
  14. 14.
    Kuehn W, Reimann K, Woerner M, Elsaesser T. Phase-resolved two-dimensional spectroscopy based on collinear n-wave mixing in the ultrafast time domain. Journal of Chemical Physics, 2009, 130 (16): 164503CrossRefGoogle Scholar
  15. 15.
    Pashkin A, Sell A, Kampfrath T, Huber R. Electric and magnetic terahertz nonlinearities resolved on the sub-cycle scale. New Journal of Physics, 2013, 15(6): 065003CrossRefGoogle Scholar
  16. 16.
    Hu J, Liu J, Li H, Wang K, Yang Z, Wang S. Influence of the amplitude ratio between two terahertz pulses on two-dimensional spectroscopy. Chinese Science Bulletin, 2014, 59(2): 138–146CrossRefGoogle Scholar
  17. 17.
    Li H, Liu J, Wang K, Yang Z. A classical iterative theory based on the Langevin equation for two-dimensional nonlinear terahertz spectroscopy. Journal of Modern Optics, 2013, 60(10): 773–780CrossRefGoogle Scholar
  18. 18.
    Li H, Liu J, Wang K, Yang Z, Du Z. Influence of terahertz pulse width on two-dimensional terahertz spectroscopy. Journal of Modern Optics, 2012, 59(10): 923–929CrossRefGoogle Scholar
  19. 19.
    Okumura K, Tanimura Y. Sensitivity of two-dimensional fifth-order Raman response to the mechanism of vibrational mode-mode coupling in liquid molecules. Chemical Physics Letters, 1997, 278 (1–3): 175–183CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Feidi Xiang
    • 1
  • Kejia Wang
    • 1
    Email author
  • Zhengang Yang
    • 1
  • Jinsong Liu
    • 1
  • Shenglie Wang
    • 1
  1. 1.Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic informationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations