Advertisement

Frontiers of Optoelectronics

, Volume 11, Issue 4, pp 400–406 | Cite as

Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes

  • Yanli Zhao
  • Junjie Tu
  • Jingjing Xiang
  • Ke Wen
  • Jing Xu
  • Yang Tian
  • Qiang Li
  • Yuchong Tian
  • Runqi Wang
  • Wenyang Li
  • Mingwei Guo
  • Zhifeng Liu
  • Qi Tang
Research Article
  • 4 Downloads

Abstract

Based on the newly proposed temperature dependent dead space model, the breakdown voltage and bandwidth of InP/InGaAs avalanche photodiode (APD) have been investigated in the temperature range from -50°C to 100°C. It was demonstrated that our proposed model is consistent with the experimental results. Our work may provide a guidance to the design of APDs with controllably low temperature coefficient.

Keywords

optical communication separate absorption, grading, charge, and multiplication avalanche photodiode (SAGCM APD) dead space effect temperature coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Hi-Tech Research and Development Program of China (No. 2008AA1Z207), Natural Science Foundation of Hubei Province, China (No. 2010CDB01606), Fundamental Research Funds for the Central Universities (HUST: 2016YXMS027), Huawei Innovation Research Program (Nos. YJCB2010032NW, YB2012120133, YB2014010026 and YB2016040002), and Scientific Research Foundation for the Returned Overseas Chinese Scholars.

References

  1. 1.
    Campbell J C. Recent advances in telecommunications avalanche photodiodes. Journal of Lightwave Technology, 2007, 25(1): 109–121CrossRefGoogle Scholar
  2. 2.
    Namekata N, Adachi S, Inoue S. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode. Optics Express, 2009, 17(8): 6275–6282CrossRefGoogle Scholar
  3. 3.
    Wu G, Jian Y, Wu E, Zeng H. Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode. Optics Express, 2009, 17(21): 18782–18787CrossRefGoogle Scholar
  4. 4.
    Namekata N, Sasamori S, Inoue S. 800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating. Optics Express, 2006, 14(21): 10043–10049CrossRefGoogle Scholar
  5. 5.
    Dixon A R, Dynes J F, Yuan Z L, Sharpe AW, Bennett A J, Shields A J. Ultrashort dead time of photon-counting InGaAs avalanche photodiodes. Applied Physics Letters, 2009, 94(23): 231113-1–231113-3CrossRefGoogle Scholar
  6. 6.
    Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J. Experimental quantum cryptography. Journal of Cryptology, 1992, 5(1): 3–28CrossRefzbMATHGoogle Scholar
  7. 7.
    Zhang J, Itzler M A, Zbinden H, Pan J W. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Science and Applications, 2015, 4 (5): e286-1–e286-13Google Scholar
  8. 8.
    Hyun K S, Park C Y. Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure. Journal of Applied Physics, 1997, 81(2): 974–984CrossRefGoogle Scholar
  9. 9.
    Bandyopadhyay A, Jamal Deen M, Tarof L E, Clark W. A simplified approach to time-domain modeling of avalanche photodiodes. IEEE Journal of Quantum Electronics, 1998, 34(4): 691–699CrossRefGoogle Scholar
  10. 10.
    Xie J, Ng J S, Tan C H. An InGaAs/AlAsSb avalanche photodiode with a small temperature coefficient of breakdown. IEEE Photonics Journal, 2013, 5(4): 6800706CrossRefGoogle Scholar
  11. 11.
    Tan L J J, Ong D S G, Ng J S, Tan C H, Jones S K, Qian Y, David J P R. Temperature dependence of avalanche breakdown in InP and InAlAs. IEEE Journal of Quantum Electronics, 2010, 46(8): 1153–1157CrossRefGoogle Scholar
  12. 12.
    Xiang J, Zhao Y. Comparison of waveguide avalanche photodiodes with InP and InAlAs multiplication layer for 25 Gb/s operation. Optical Engineering (Redondo Beach, Calif.), 2014, 53(4): 046106-1–046106-7Google Scholar
  13. 13.
    Zhao Y, He S. Multiplication characteristics of InP/InGaAs avalanche photodiodes with a thicker charge layer. Optics Communications, 2006, 265(2): 476–480CrossRefGoogle Scholar
  14. 14.
    El-Batawy Y M, Deen M J. Analysis and circuit modeling of waveguide-separated absorption charge multiplication-avalanche photodetector (WG-SACM-APD). IEEE Transactions on Electron Devices, 2005, 52(3): 335–344CrossRefGoogle Scholar
  15. 15.
    Das N R, Deen MJ. On the frequency response of a resonant-cavityenhanced separate absorption, grading, charge, and multiplication avalanche photodiode. Journal of Applied Physics, 2002, 92(12): 7133–7145CrossRefGoogle Scholar
  16. 16.
    Okuto Y, Crowell C R. Energy-conservation considerations in the characterization of impact ionization in semiconductors. Physical Review B: Condensed Matter and Materials Physics, 1972, 6(8): 3076–3081CrossRefGoogle Scholar
  17. 17.
    Chau H F, Pavlidis D. Physics based fitting and extrapolation method for measured impact ionization coefficients in III–V semiconductors. Journal of Applied Physics, 1992, 72(2): 531–538CrossRefGoogle Scholar
  18. 18.
    Zhao Y, Zhang D, Qin L, Tang Q, Wu R H, Liu J, Zhang Y, Zhang H, Yuan X, Liu W. InGaAs-InP avalanche photodiodes with dark current limited by generation-recombination. Optics Express, 2011, 19(9): 8546–8556CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yanli Zhao
    • 1
  • Junjie Tu
    • 1
  • Jingjing Xiang
    • 1
    • 3
  • Ke Wen
    • 1
  • Jing Xu
    • 1
  • Yang Tian
    • 1
  • Qiang Li
    • 1
  • Yuchong Tian
    • 1
  • Runqi Wang
    • 1
  • Wenyang Li
    • 1
  • Mingwei Guo
    • 1
  • Zhifeng Liu
    • 2
  • Qi Tang
    • 2
  1. 1.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina
  2. 2.Wuhan Aroptics-Tech Co., LTDWuhanChina
  3. 3.Sichuan BranchChina Unicom Network Communications Co., LtdChengduChina

Personalised recommendations